Abstract
Abstract
Background
Increases in resistance to fluoroquinolones have been correlated with the use of levofloxacin in the treatment of infections caused by Escherichia coli. The analysis presents the in vitro activity of ceftazidime-avibactam and comparator agents against 10,840 levofloxacin-resistant E. coli isolates collected from four geographic regions (Africa/Middle East, Europe, Asia/South Pacific, Latin America) between 2012 and 2018.
Methods
Non-duplicate clinical isolates of E. coli were collected from participating centres and shipped to IHMA, Inc., (Schaumburg, IL, USA). Susceptibility testing was performed with frozen broth microdilution panels manufactured by IHMA, according to CLSI guidelines. Levofloxacin-resistance was defined at a minimum inhibitory concentration of ≥ 2 mg/L. Isolates collected between 2012 and 2015 were tested for extended-spectrum β-lactamase (ESBL) activity by determining susceptibility to cefotaxime, cefotaxime-clavulanate, ceftazidime, and ceftazidime-clavulanate as recommended by CLSI guidelines. Isolates collected between 2016 and 2018 were identified as ESBL-positive by genotype using multiplex polymerase chain reaction assays.
Results
A total of 74.8% of levofloxacin-resistant E. coli isolates in the analysis were from three culture sources: urinary tract infections (N = 3229; 29.8%), skin and skin structure infections (N = 2564; 23.7%) and intra-abdominal infections (N = 2313; 21.3%). Susceptibility rates to ceftazidime-avibactam were consistently high in all regions against both ESBL-positive (97.0% in Asia/South Pacific to 99.7% in Africa/Middle East and Latin America) and ESBL-negative isolates (99.4% in Asia/South Pacific to 100% in Latin America). Susceptibility was also high in each region among ESBL-positive and ESBL-negative isolates to colistin (≥ 98.5%), imipenem (≥ 96.5%), meropenem (≥ 96.5%) and tigecycline (≥ 94.1%).
Conclusions
Antimicrobial susceptibility to ceftazidime-avibactam among levofloxacin-resistant E. coli isolates, including ESBL-positive isolates, collected from four geographical regions between 2012 and 2018 was consistently high. Susceptibility to the comparator agents colistin, tigecycline, imipenem and meropenem was also high.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Microbiology (medical),General Medicine
Reference27 articles.
1. World Health Organization (WHO). Antimicrobial resistance. Global action plan on antimicrobial resistance. Geneva: WHO; 2015. http://apps.who.int/iris/bitstream/handle/10665/193736/9789241509763_eng.pdf. Accessed 15 Sept 2020.
2. Drusano G, Labro M-T, Cars O, Mendes P, Shah P, Sörgel F, et al. Pharmacokinetics and pharmacodynamics of fluoroquinolones. Clin Microbiol Infect. 1998;4(Suppl 2):S27–41.
3. Wu H-H, Liu H-Y, Lin Y-C, Hsueh P-R, Lee Y-J. Correlation between levofloxacin consumption and the incidence of nosocomial infections due to fluoroquinolone-resistant Escherichia coli. J Microbiol Immunol Infect. 2016;49:424–9.
4. Hooper DC. Bacterial topoisomerases, anti-topoisomerases, and anti-topoisomerase resistance. Clin Infect Dis. 1998;27(Suppl 1):S54-63.
5. Hooper DC, Jacoby GA. Mechanisms of drug resistance: quinolone resistance. Ann N Y Acad Sci. 2015;1354:12–31.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献