Valorization of organic waste fractions: a theoretical study on biomethane production potential and the recovery of N and P in Austria

Author:

Rosenfeld Daniel C.ORCID,Lindorfer Johannes,Ellersdorfer Markus

Abstract

Abstract Background Due to climate change and the rising world population, sustainable energy and fertilizer production faces many challenges. The utilization of organic waste fractions is one possible solution for promoting sustainability. Organic waste fractions have a high potential for biomethane production, which could positively contribute to the current energy mix. Furthermore, organic waste fractions could be used for nutrient recovery (i.e., the recovery of N and P) concurrently to their use in biomethane production. This study examined the theoretical potential of organic waste fractions for valorization in Austria. Further, it provides a theoretical overview of biomethane production and nutrient-recovery potential. Results This analysis revealed a total substrate potential of 13 Mt per year in Austria, with the highest contribution from manure. Over 900 million Nm3 of biomethane could potentially be produced from organic waste fractions. Furthermore, developing organic waste fractions as an energy source could improve the impact of the natural gas consuming sectors on climate, reducing 2.4 Mt of CO2 emissions annually. Regarding nutrient recovery, more than 60 kt of N and 20 kt of P could potentially be recovered per year. Conclusion The study shows a high potential for producing biomethane from organic waste fractions in Austria. The overall production potential could substitute up to 11% of the Austrian natural gas demand, which could highly decrease the CO2 emissions from fossil energy carriers. Furthermore, a high nutrient recovery potential was identified for an inclusive implementation of an efficient recovery.

Funder

Österreichische Forschungsförderungsgesellschaft

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Development,Renewable Energy, Sustainability and the Environment

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3