The energy potential of soft rush (Juncus effusus L.) in different conversion routes

Author:

Müller JürgenORCID,Jantzen Christian,Wiedow Denny

Abstract

Abstract Background Rushes are prominent wetland plants that are well adapted to conditions of waterlogging. Tall rushes like soft rush (Juncus effusus L.) tend to dominate the vegetation and offer a great biomass potential. Removing rush biomass is often necessary to enhance various ecosystem services of wetlands. There is an urgent need for sustainable use of the removed biomass apart from expensive composting ore useless landfill. Methods We investigated three alternative energy utilisation routes for soft rush biomass and evaluated their energetic potential: biomethanisation via wet fermentation technique (a), biomethanisation via solid-state fermentation technique (b) and combustion (c). Batch experiments (a), experimental fermenters (b), and thermo-calorimetric equipment (c) were used to measure energy output per unit rush biomass input. Results The wet fermentation technique had significantly higher biogas yields than solid-state fermentation (399 LN kg−1 oDM compared to 258 LN kg−1 oDM). These yields constitute 59 and 43%, respectively, of the biogas potential of maize silage as a reference. Solid-state fermentation technique needs longer retention time compared to wet co-digestion to earn comparable methane yields. Soft rush biomass shows high heating values (15.06 MJ kg FMw15−1) compared to other herbaceous solid fuels. Conclusions Low costs for substrate production make energetic utilisation of Juncus effusus an interesting alternative, if short distances between fields and biomass conversion plant can be realised. All investigated conversion routes appear promising, provided that the substrate specifics are considered in the design of the conversion technique. Besides the size of the rush dominated area and the distribution of these areas in the landscape, the investment costs and the subsidies for the conversion plant play a pivotal role in the selection of the preferred conversion path.

Funder

Deutsche Bundesstiftung Umwelt

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Development,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3