Abstract
Abstract
Background
Rushes are prominent wetland plants that are well adapted to conditions of waterlogging. Tall rushes like soft rush (Juncus effusus L.) tend to dominate the vegetation and offer a great biomass potential. Removing rush biomass is often necessary to enhance various ecosystem services of wetlands. There is an urgent need for sustainable use of the removed biomass apart from expensive composting ore useless landfill.
Methods
We investigated three alternative energy utilisation routes for soft rush biomass and evaluated their energetic potential: biomethanisation via wet fermentation technique (a), biomethanisation via solid-state fermentation technique (b) and combustion (c). Batch experiments (a), experimental fermenters (b), and thermo-calorimetric equipment (c) were used to measure energy output per unit rush biomass input.
Results
The wet fermentation technique had significantly higher biogas yields than solid-state fermentation (399 LN kg−1 oDM compared to 258 LN kg−1 oDM). These yields constitute 59 and 43%, respectively, of the biogas potential of maize silage as a reference. Solid-state fermentation technique needs longer retention time compared to wet co-digestion to earn comparable methane yields. Soft rush biomass shows high heating values (15.06 MJ kg FMw15−1) compared to other herbaceous solid fuels.
Conclusions
Low costs for substrate production make energetic utilisation of Juncus effusus an interesting alternative, if short distances between fields and biomass conversion plant can be realised. All investigated conversion routes appear promising, provided that the substrate specifics are considered in the design of the conversion technique. Besides the size of the rush dominated area and the distribution of these areas in the landscape, the investment costs and the subsidies for the conversion plant play a pivotal role in the selection of the preferred conversion path.
Funder
Deutsche Bundesstiftung Umwelt
Publisher
Springer Science and Business Media LLC
Subject
Energy Engineering and Power Technology,Development,Renewable Energy, Sustainability and the Environment
Reference62 articles.
1. Harriman NA, Redmond D (1976) Somatic chromosome numbers for some north American species of Juncus L. Rhodora 78(816):727–738
2. Snogerup S (1993) A revision of Juncus subgen. Juncus (Juncaceae). Willdenowia 23(1/2):23–73
3. Hurd EG, Goodrich S, Shaw NL (1994) Field guide to intermountain rushes. General Technical Report INT-306, vol 306, Ogden, UT
4. Wetzel RG, Howe MJ (1999) High production in a herbaceous perennial plant achieved by continuous growth and synchronized population dynamics. Aquat Bot 64(2):111–129. https://doi.org/10.1016/S0304-3770(99)00013-3
5. Ervin GN, Wetzel RG (2002) Influence of a dominant macrophyte, Juncus effusus, on wetland plant species richness, diversity, and community composition. Oecologia 130(4):626–636
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献