Optimal design for a hybrid microgrid-hydrogen storage facility in Saudi Arabia

Author:

Alturki Abdulaziz A.

Abstract

Abstract Background Sustainable development requires access to affordable, reliable, and efficient energy to lift billions of people out of poverty and improve their standard of living. The development of new and renewable forms of energy that emit less CO2 may not materialize quickly enough or at a price point that allows people to attain the standard of living they desire and deserve. As a result, a parallel path to sustainability must be developed that uses both renewable and clean carbon-based methods. Hybrid microgrids are promoted to solve various electrical and energy-related issues that incorporate renewable energy sources such as photovoltaics, wind, diesel generation, or a combination of these sources. Utilizing microgrids in electric power generation has several benefits including clean energy, increased grid stability, and reduced congestion. Despite these advantages, microgrids are not frequently deployed because of economic concerns. To address these financial concerns, it is necessary to explore the ideal configuration of microgrids based on the quantity, quality, and availability of sustainable energy sources used to install the microgrid and the optimal design of microgrid components. These considerations are reflected in net present value and levelized energy cost. Methods HOMER was used to simulate numerous system configurations and select the most feasible solution according to the net present value, levelizied cost of energy and hydrogen, operating cost, and renewable fraction. HOMER performed a repeated algorithm process to determine the most feasible system configuration and parameters with the least economic costs and highest benefits to achieve a practically feasible system configuration. Results This article aimed to construct a cost-effective microgrid system for Saudi Arabia's Yanbu city using five configurations using excess energy to generate hydrogen. The obtained results indicate that the optimal configuration for the specified area is a hybrid photovoltaic/wind/battery/generator/fuel cell/hydrogen electrolyzer microgrid with a net present value and levelized energy cost of $10.6 billion and $0.15/kWh. Conclusion With solar photovoltaic and wind generation costs declining, building electrolyzers in locations with excellent renewable resource conditions, such as Saudi Arabia, could become a low-cost hydrogen supply option, even when accounting for the transmission and distribution costs of transporting hydrogen from renewable resource locations to end-users. The optimum configuration can generate up to 32,132 tons of hydrogen per year (tH2/year), and 380,824 tons per year of CO2 emissions can be avoided.

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Development,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3