Sustainable energy recovery from thermal processes: a review

Author:

Chen Weidong,Huang Zhifeng,Chua Kian Jon

Abstract

Abstract Background With the increasing concerns on the energy shortage and carbon emission issues worldwide, sustainable energy recovery from thermal processes is consistently attracting extensive attention. Nowadays, a significant amount of usable thermal energy is wasted and not recovered worldwide every year. Meanwhile, discharging the wasted thermal energy often causes environmental hazards. Significant social and ecological impacts will be achieved if waste thermal energy can be effectively harnessed and reused. Hence, this study aims to provide a comprehensive review on the sustainable energy recovery from thermal processes, contributing to achieving energy security, environmental sustainability, and a low-carbon future. Main text To better understand the development of waste thermal energy utilization, this paper reviews the sustainable thermal energy sources and current waste energy recovery technologies, considering both waste heat and cold energy. The main waste heat sources are prime movers, renewable heat energy, and various industrial activities. Different waste heat recovery technologies to produce electricity, heating, and cooling are analyzed based on the types and temperatures of the waste heat sources. The typical purposes for waste heat energy utilization are power generation, spacing cooling, domestic heating, dehumidification, and heat storage. In addition, the performance of different waste heat recovery systems in multigeneration systems is introduced. The cold energy from the liquified natural gas (LNG) regasification process is one of the main waste cold sources. The popular LNG cold energy recovery strategies are power generation, combined cooling and power, air separation, cryogenic CO2 capture, and cold warehouse. Furthermore, the existing challenges on the waste thermal energy utilization technologies are analyzed. Finally, potential prospects are discussed to provide greater insights for future works on waste thermal energy utilization. Conclusions Novel heat utilization materials and advanced heat recovery cycles are the key factors for the development of waste high-temperature energy utilization. Integrated systems with multiply products show significant application potential in waste thermal energy recovery. In addition, thermal energy storage and transportation are essential for the utilization of harnessed waste heat energy. In contrast, the low recovery rate, low utilization efficiency, and inadequate assessment are the main obstacles for the waste cold energy recovery systems.

Funder

National Research Foundation Singapore

Energy Market Authority of Singapore

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Development,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3