Scenario-based LCA for assessing the future environmental impacts of wind offshore energy: An exemplary analysis for a 9.5-MW wind turbine in Germany

Author:

Benitez Alicia,Wulf Christina,Steubing Bernhard,Geldermann Jutta

Abstract

Abstract Background Offshore wind energy (OWE) will play a significant role in achieving climate neutrality. For example, several scenarios for Germany (e.g., Kopernikus base, Kopernikus 1.5 degree, Prognos CN65, and CN60) depict substantial OWE annual installed capacity additions, especially after 2030. This tendency promotes OWE technology development as deployment expands, allowing manufacturers to gain expertise and optimize wind turbine construction. The global trend towards ever-larger components (e.g., hub height and rotor diameter) is critical to achieving higher-rated capacities. These aspects and others, such as wind quality, influence not only OWE annual electricity production but also its environmental performance. In addition, future supply chains might reduce their environmental impacts and enhance OWE climate change mitigation. In this paper, a prospective life cycle assessment (pLCA) is developed and applied exemplarily for a 9.5-MW offshore wind turbine (OWT) on the North Sea coast of Germany for the years 2030 and 2050. Considering that the current OWTs under construction in Europe have an average capacity of 10 MW, Germany plans to instal OWTs of 9.5-MW. This exemplary OWT describes the potential advances for offshore wind turbines in 2030 and 2050, considering component scale-up and learning effects. Yet, the methodology is adaptable to various installed capacities and regions. This approach allows us to analyse not only the potential future characteristics of wind turbines, but also future developments in OWE supply chains. Therefore, relevant parameters related to OWT construction and operation (e.g., rotor diameter, hub height, distance to the shore, lifetime, etc.) as well as prospective life cycle inventory data for background systems that reflect potential future developments in the broader economy are considered. In this way, scenarios (e.g., optimistic, moderate, and pessimistic) for OWE elucidate the expected environmental impacts, such as climate change, marine eutrophication, and abiotic depletion potential, in 2030 and 2050. Results The findings describe the variability of the environmental impacts of a 9.5-MW offshore wind turbine representing the technologies expected to be available in Germany in 2030 and 2050 and show that climate change impacts could vary between 7 and 18 g CO2-eq per kWh produced in 2030 and between 5 and 17 g CO2-eq per kWh in 2050. However, marine eutrophication could experience a significant increase (100% increase), depending on the consideration of hydrogen as a fuel in the electricity mix, as demonstrated in the climate-neutral scenarios adopted for Germany. Overall, construction efficiency improvements in 2050 might reduce the required materials, leading to a 6% decrease in abiotic depletion potential compared to 2030 values. Conclusions This paper highlights the need to consider temporal improvements in LCA studies, particularly when assessing the environmental impacts of offshore wind turbines. The complex nature and rapid growth of offshore wind technology require a comprehensive life cycle approach to deepen our understanding of its potential environmental impacts.

Funder

Helmholtz Gemeinschaft Deutscher Forschungszentren

Forschungszentrum Jülich GmbH

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3