Biodiesel production from a non-edible source of royna (Aphanamixis polystachya) oil

Author:

Rahman Md. WasikurORCID,Mondal Asim Kumar,Hasan Md. Shakil,Sultana Marzia

Abstract

Abstract Background Rapid consumption of fossil fuels as well as rising environmental deterioration caused by extreme CO2 emissions has become crucial in searching for a clean and renewable energy source such as biodiesel. The current work is an attempt to produce biodiesel from a potential non-edible feedstock of Aphanamixis polystachya, locally known as ‘Royna’ seed oil in Bangladesh. Methods Royna oil was extracted from the seed by Soxhlet extraction method. Biodiesel was synthesized by a three-step process: saponification of oil, followed by acidification of the soap, and esterification of the free fatty acid (FFA). Results The result presented showed that royna seed was found to be rich in oil with a maximum yield of 51% (w/w). Several reaction parameters were optimized during biodiesel production in their percentage proportion of oil to a catalyst (1:2), soap to HCl (1:1.5), FFA to an alcohol molar ratio (1:7), and catalyst (1 wt%). As a result, the highest yield of 97% was obtained from 7.5 wt% FFA content oil at 70 °C for 90-min reaction time. ASTM verified standard methods were employed to analyze the physicochemical properties of the as-prepared biodiesel. The structural and surface properties of the royna oil and as-prepared biodiesel were determined by 1H NMR and FTIR spectroscopic methods indicating a complete conversion of oil to biodiesel. Conclusions The study investigated the promising viability of royna oil to biodiesel using a three-step conversion route along with the heterogeneous catalysis system to circumvent the current environmental issues.

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Development,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3