Abstract
AbstractBackgroundA further increase in renewable energy supply is needed to substitute fossil fuels and combat climate change. Each energy source and respective technologies have specific techno-economic and environmental characteristics as well as social implications. This paper presents a comprehensive approach for prospective sustainability assessment of energy technologies developed within the Helmholtz Initiative “Energy System 2050” (ES2050).MethodsThe “ES2050 approach” comprises environmental, economic, and social assessment. It includes established life cycle based economic and environmental indicators, and social indicators derived from a normative concept of sustainable development. The elaborated social indicators, i.e. patent growth rate, acceptance, and domestic value added, address three different socio-technical areas, i.e. innovation (patents), public perception (acceptance), and public welfare (value added).ResultsThe implementation of the “ES2050 approach” is presented exemplarily and different sustainability indicators and respective results are discussed based on three emerging technologies and corresponding case studies: (1) synthetic biofuels for mobility; (2) hydrogen from wind power for mobility; and (3) batteries for stationary energy storage. For synthetic biofuel, the environmental advantages over fossil gasoline are most apparent for the impact categories Climate Change and Ionizing Radiation—human health. Domestic value added accounts for 66% for synthetic biofuel compared to 13% for fossil gasoline. All hydrogen supply options can be considered to become near to economic competitiveness with fossil fuels in the long term. Survey participants regard Explosion Hazard as the most pressing concern about hydrogen fuel stations. For Li-ion batteries, the results for patent growth rate indicate that they enter their maturity phase.ConclusionsThe “ES2050 approach” enables a consistent prospective sustainability assessment of (emerging) energy technologies, supporting technology developers, decision-makers in politics, industry, and society with knowledge for further evaluation, steering, and governance. The approach presented is considered rather a starting point than a blueprint for the comprehensive assessment of renewable energy technologies though, especially for the suggested social indicators, their significance and their embedding in context scenarios for prospective assessments.
Funder
helmholtz-gemeinschaft
Karlsruher Institut für Technologie (KIT)
Publisher
Springer Science and Business Media LLC
Subject
Energy Engineering and Power Technology,Development,Renewable Energy, Sustainability and the Environment
Reference154 articles.
1. International Renewable Energy Agency (IRENA) (2019) Global energy transformation: a roadmap to 2050 (2019 edition). International Renewable Energy Agency, Abu Dhabi
2. European Commission (2019) MITTEILUNG DER KOMMISSION AN DAS EUROPÄISCHE PARLAMENT, DEN RAT, DEN EUROPÄISCHEN WIRTSCHAFTS-UND SOZIALAUSSCHUSS UND DEN AUSSCHUSS DER REGIONEN—Der europäische Grüne Deal. Brüssel
3. Agora Energiewende (2015) Understanding the Energiewende. FAQ on the ongoing transition of the German power system. publ. online. https://www.agora-energiewende.de/fileadmin/Projekte/2015/Understanding_the_EW/Agora_Understanding_the_Energiewende.pdf
4. Santoyo-Castelazo E, Azapagic A (2014) Sustainability assessment of energy systems: integrating environmental, economic and social aspects. J Clean Prod 80:119–138
5. Hadian S, Madani K (2015) A system of systems approach to energy sustainability assessment: are all renewables really green? Ecol Indic 52:194–206
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献