Author:
Cenderello Giovanni,Pasa Ambra,Dusi Andrea,Dentone Chiara,Toscanini Federica,Bobbio Nicoletta,Bondi Elisabetta,Del Bono Valerio,Izzo Manuela,Riccio Giovanni,Anselmo Marco,Giacchino Raffaella,Marazzi Maria Grazia,Pagano Gabriella,Cassola Giovanni,Viscoli Claudio,Ferrea Giuseppe,De Maria Andrea
Abstract
Abstract
Background
Visceral Leishmaniasis (VL) is endemic in 88 countries, in areas of relatively low incidence with a relevant proportion of immune suppressed patients clinical presentation, diagnosis and management may present difficulties and pitfalls.
Methods
Demographic data, clinical, laboratory features and therapeutic findings were recorded in patients identified by a regional VL disease registry from January 2007 to December 2010.
Results
A total of 55 patients (36 adults mean age 48.7 years, 19 children median age 37.5 months) were observed presenting with 65 episodes. All childen were immunocompetent, whereas adults affected by VL included both immunocompetent (n°17) and immunesuppressed (n°19) patients. The clinical presentation was homogeneous in children with predominance of fever and hepato-splenomegaly. A wider spectrum of clinical presentations was observed in immunocompromised adults. Bone marrow detection of intracellular parasites (Giemsa staining) and serology (IFAT) were the most frequently used diagnostic tools. In addition, detection of urinary antigen was used in adult patients with good specificity (90%). Liposomal amphotericin B was the most frequently prescribed first line drug (98.2% of cases) with 100% clinical cure. VL relapses (n°10) represented a crucial finding: they occurred only in adult patients, mainly in immunocompromised patients (40% of HIV, 22% of non-HIV immunocompromised patients, 5,9% of immunocompetent patients). Furthermore, three deaths with VL were reported, all occurring in relapsing immunocompromised patients accounting for a still high overall mortality in this group (15.8%).
Conclusions
The wide spectrum of clinical presentation in immunesuppresed patients and high recurrence rates still represent a clinical challenge accounting for high mortality. Early clinical identification and satisfactory treatment performance with liposomal amphotericin B are confirmed in areas with low-level endemicity and good clinical standards. VL needs continuing attention in endemic areas where increasing numbers of immunocompromised patients at risk are dwelling.
Publisher
Springer Science and Business Media LLC
Reference39 articles.
1. WHO Report on Global Surveillance of Epidemic-prone Infectious Diseases: Chapter ten Leishmaniasis and Leishmania HIV/coinfection: Background Information. 2009, WHO, Available from: http://www.who.int/csr/resources/publications/surveillance/Leishmaniasis.pdf last accessed May 03rd 2012
2. Ready PD: Leishmaniasis emergence and climate change. Climate change: the impact on the epidemiology and control of animal diseases. Edited by: de la Roque S. 2008, 27: 399-412. Rev Sci Tech Off Int Epiz
3. Kuillick-Kendrick R: Phlebotomine vectors of the leishmaniases: a review. Med Vet Entomol. 1990, 4: 1-24. 10.1111/j.1365-2915.1990.tb00255.x.
4. Peters N, Sacks D: Immune privilege in site of chronic infection: leishmania and regulatory T cells. Immunol Rev. 2006, 213: 159-179. 10.1111/j.1600-065X.2006.00432.x.
5. Hovius E, Pinelli E, Nijsse R, Poot J, van der Giessen J: Introduction of leishmania species in the Netherland from dogs who are returning from military missions and vacations in countries where leishmaniasis is endemic. Tijdschr Diergeneeskd. 2011, 136: 344-348.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献