Author:
Zhang Zehua,Li Litao,Luo Fei,Cheng Peng,Wu Feng,Wu Zheng,Hou Tianyong,Zhong Min,Xu Jianzhong
Abstract
Abstract
Background
DNA microarrays can detect tuberculosis and its multi-drug resistant form in M. tuberculosis isolates and sputum specimens with high sensitivity and specificity. However, no performance data currently exists for its use in spinal tuberculosis specimens. This study was aimed to assess the performance of the CapitalBio™ DNA microarray in the detection of isoniazid (INH) and rifampicin (RMP) resistance in spinal tuberculosis compared with the BACT/MGIT 960 system.
Methods
From March 2009 to December 2011, 153 consecutive patients from Southwest Hospital, Chongqing with clinically and pathologically diagnosed spinal tuberculosis were enrolled into this study. Specimens collected during surgery from the tuberculosis patients were subjected to M. tuberculosis species identification and drug-resistance detection by the CapitalBio™ DNA microarray, and results were compared with those obtained from the absolute concentration drug susceptibility testing.
Results
The CapitalBio™ DNA microarray achieved 93.55% sensitivity for the correct M. tuberculosis species identification of the 93 specimens that tested positive for spinal tuberculosis through culture. In addition, twenty-seven additional patients (45.0%) were detected by the DNA microarray to be positive for M. tuberculosis among sixty spinal tuberculosis patients who were culture negative. Moreover, the DNA microarray had a sensitivity of 88.9% and a specificity of 90.7% for RMP resistance, and the microarray had a sensitivity of 80.0% and a specificity of 91.0% for INH resistance. The mean turn-around time of M. tuberculosis species identification and drug resistance detection using the DNA microarray was 5.8 (range, 4–9) hours.
Conclusions
The CapitalBio™ DNA microarray is a feasible and accurate tool for the species identification of M. tuberculosis and for directly detecting RMP and INH resistance from spinal tuberculosis specimens in fewer than 9 hours.
Publisher
Springer Science and Business Media LLC
Reference16 articles.
1. World Health Organization: Global tuberculosis control 2010. 2010, Geneva: WHO, IOP Publishing PhysicsWeb. http://www.who.int/tb/publications/global_report/en/
2. Li L, Zhang Z, Jianzhong X: Management of drug-resistant spinal tuberculosis with a combination of surgery and individualized chemotherapy: a retrospective analysis of thirty-five patients. Int Orthop. 2011, 36: 277-283.
3. Rüsch S, Gaby E, Casal M: Multicenter laboratory validation of the BACTEC MGIT 960 technique for testing susceptibilities of mycobacterium tuberculosis to classical second-line drugs and newer antimicrobials. J Clin Microbiol. 2006, 44 (3): 688-692. 10.1128/JCM.44.3.688-692.2006.
4. Sun A, Fan X, An W, Yan J: Rapid Detection of rpoB Gene Mutations in Rif-resistant M.tuberculosis Isolates by Oligonucleotide Microarray. Biomed Environ Sci. 2009, 22: 253-258. 10.1016/S0895-3988(09)60053-2.
5. Cabibbe AM, Miotto P, Lazzeri E, Mugasa J, Santoro F: New DNA microarray platform for detection of MDR Mycobacterium tuberculosis and of drug-resistant malaria. Clin Microbiol Infect. 2011, 17 (Suppl 3): 591-592.
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献