Author:
Al-Wathiqi Faten,Ahmad Suhail,Khan Ziauddin
Abstract
Abstract
Background
Within the genus Aspergillus, A. flavus is the second most important species of clinical significance. It is predominantly associated with infections involving sinuses, eye and skin, mostly in geographic regions with hot and arid climate, including the Middle East. Recent reports on emergence of resistance to triazoles among Aspergillus spp. is a cause of concern for treatment of patients with invasive aspergillosis. In this study we present data on genetic characterization and antifungal susceptibility profile of clinical and environmental isolates of A. flavus.
Methods
Ninety-nine Aspergillus section Flavi isolates, originating from clinical (n=92) and environmental (n=7) sources, initially identified by morphological characteristics, were analyzed by partial sequencing of β-tubulin and calmodulin gene fragments and their susceptibilities to six antifungal agents was determined by Etest on RPMI1640 and Muller-Hinton agar media. Etest minimum inhibitory concentrations (MICs) of amphotericin B and voriconazole were also compared with zone of inhibition diameters obtained by disc diffusion test on RPMI agar medium.
Results
The identity of all clinical and environmental isolates was confirmed as A. flavus species by combined analysis of β-tubulin and calmodulin genes. The mean MIC90 (μg/ml) values on RPMI medium for amphotericin B, voriconazole, posaconazole, anidulafungin, micafungin and caspofungin were 3, 0.25, 0.25, 0.002, 0.002 and 0.032, respectively. No environmental isolate exhibited MIC value of >2 μg/ml for amphotericin B. For clinical isolates, the zone of inhibition diameters for amphotericin B and voriconazole ranged from 7–16 mm and 24–34 mm, respectively. Linear regression analysis between Etest MIC values and disk diffusion diameters revealed a significant inverse correlation with amphotericin B (p <0.001) and voriconazole (p<0.003).
Conclusions
The β-tubulin and calmodulin gene sequences confirmed that all 92 clinical isolates identified phenotypically belonged to A. flavus taxon, thus suggesting that the other species within Aspergillus section Flavi are of little clinical significance. Triazoles and echinocandins showed very good in vitro activity against the A. flavus, however, 10% clinical isolates showed MICs of >2 μg/ml for amphotericin B.
Publisher
Springer Science and Business Media LLC
Reference49 articles.
1. Dasbach EJ, Davies GM, Teutsch SM: Burden of aspergillosis-related hospitalizations in the United States. Clin Infect Dis. 2000, 31: 1524-1528. 10.1086/317487.
2. Krishnan S, Manavathu EK, Chandrasekar PH: Aspergillus flavus: an emerging non-fumigatus Aspergillus species of significance. Mycoses. 2009, 52: 206-222. 10.1111/j.1439-0507.2008.01642.x.
3. Hageskal G, Kristensen R, Fristad RF, Skaar I: Emerging pathogen Aspergillus calidoustus colonizes water distribution systems. Med Mycol. 2011, 49: 588-593.
4. Coelho D, Silva S, Vale-Silva LS, Gomes H, Pinto EN, Sarmento AN, Pinheiro M: Aspergillus viridinutans: an agent of adult chronic invasive aspergillosis. Med Mycol. 2011, 49: 755-759.
5. Fadl FA, Hassan KM, Faizuddin M: Allergic fungal rhinosinusitis: report of 4 cases from Saudi Arabia. Saudi Med J. 2000, 21: 581-584.
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献