Author:
Tolani Monica Prem,D'souza Desiree Therese Blossom,Mistry Nerges Furdoon
Abstract
Abstract
Background
Only 5% of the estimated global multidrug resistant TB (MDRTB) load is currently detected. Endemic Mumbai with increasing MDR would benefit from the introduction of molecular methods to detect resistance.
Methods
The GenoType MTBDRplus assay was used to determine mutations associated with isoniazid and rifampicin resistance and their correlation with treatment outcomes. It was performed on a convenience sample comprising 88 onset and 67 fifth month isolates for which phenotypic drug susceptibility testing (DST) was determined by the Buddemeyer technique for an earlier study. Simultaneous presence of wild type and mutant bands was referred to as "mixed patterns" (heteroresistance).
Results
Phenotypically 41 isolates were sensitive; 11 isoniazid, 2 rifampicin, 2 pyrazinamide and 5 ethambutol monoresistant; 16 polyresistant and 78 MDR. The agreement between both methods was excellent (kappa = 0.72-0.92). Of 22 rifampicin resistant onset isolates, the predominant rpoB mutations were the singular lack of WT8 (n = 8) and mixed D516V patterns (n = 9). Of the 64 rifampicin resistant fifth month isolates, the most frequent mutations were in WT8 (n = 31) with a further 9 showing the S531L mutation. Mixed patterns were seen in 22 (34%) isolates, most frequently for the D516V mutation (n = 21). Of the 22 onset and 35 fifth month katG mutants, 13 and 12 respectively showed the S315T1 mutation with loss of the WT. Mixed patterns involving both S315T1 and S315T2 were seen in 9 and 23 isolates respectively. Seventeen of 23 and 23/35 inhA mutant onset and fifth month isolates showed mixed A16G profiles. Additionally, 10 fifth month isolates lacked WT2. Five onset and 6 fifth month isolates had both katG and inhA mutations. An association was noted between only katG but not only inhA resistance and poor outcome (p = 0.037); and additional resistance to ethambutol (p = 0.0033). More fifth month than onset isolates had mixed profiles for at least 1 gene (p = 0.000001).
Conclusions
The use of the assay to rapidly diagnose MDR could guide simultaneous first- and second-line DST, and reduce the delay in administering appropriate regimens. Furthermore, detection of heteroresistance could prevent inaccurate "cured" treatment outcomes documented through smear microscopy and permit more sensitive detection of neonascent resistance.
Publisher
Springer Science and Business Media LLC
Reference49 articles.
1. World Health Organisation: Multidrug and extensively drug-resistant TB (M/XDR-TB): 2010 Global report on surveillance and response. 2010, WHO/HTM/TB/2010.3
2. Albert H, Bwanga F, Mukkada S, Nyesiga B, Ademun JP, Lukyamuzi G, Haile M, Hoffner S, Joloba M, O'Brien R: Rapid screening of MDR-TB using molecular Line Probe Assay is feasible in Uganda. BMC Infect Dis. 2010, 10: 41-10.1186/1471-2334-10-41.
3. World Health Organisation: Policy statement. Molecular line probe assays for rapid screening of patients at risk of multi-drug resistant TB (MDR-TB). 2008, [http://www.who.int/tb/laboratory/lpa_policy.pdf]
4. Watterson SA, Wilson SM, Yates MD, Drobniewski FA: Comparison of three molecular assays for rapid detection of rifampin resistance in Mycobacterium tuberculosis. J Clin Microbiol. 1998, 36: 1969-1973.
5. de Beenhouwer HZ, Hiang L, Jannes G, Mijs W, Machtelinckx L, Rossau R, Traore H, Portaels F: Rapid detection of rifampicin resistance in sputum and biopsy specimens from tuberculosis patients by PCR and line probe assay. Tuber Lung Dis. 1995, 76: 425-430. 10.1016/0962-8479(95)90009-8.
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献