Author:
Ouburg Sander,Spaargaren Joke,den Hartog Janneke E,Land Jolande A,Fennema Johan SA,Pleijster Jolein,Peña A Salvador,Morré Servaas A,
Abstract
Abstract
Background
The functional polymorphism -260 C>T in the LPS sensing TLR4 co-receptor CD14 gene enhances the transcriptional activity and results in a higher CD14 receptor density. Individuals carrying the T/T genotype also have significantly higher serum levels of soluble CD14. The T allele of this polymorphism has recently been linked to Chlamydia pneumoniae infection. We investigated the role of the CD14 -260 C>T polymorphism in the susceptibility to and severity (defined as subfertility and/or tubal pathology) of C. trachomatis infection in Dutch Caucasian women.
Methods
The different CD14 -260 C>T genotypes were assessed by PCR-based RFLP analysis in three cohorts: 1) A cohort (n = 576) of women attending a STD clinic, 2) a cohort (n = 253) of women with subfertility, and 3) an ethnically matched control cohort (n = 170). The following variables were used in the analysis: In cohort 1 the CT-DNA status, CT IgG serology status, self-reported symptoms and in cohort 2, the CT IgG serology status and the tubal status at laparoscopy.
Results
In the control cohort the CC, CT and TT genotype distribution was: 28.2%, 48.2%, and 23.5% respectively. No differences were found in the overall prevalence of CD14 -260 genotypes (28.1%, 50.7%, and 21.2%) in cohort 1 when compared to the control cohort. Also no differences were observed in women with or without CT-DNA, with or without serological CT responses, with or without symptoms, or in combinations of these three variables. In subfertile women with tubal pathology (cohort 2, n = 50) the genotype distribution was 28.0%, 48.0%, and 24.0% and in subfertile women without tubal pathology (n = 203), 27.6%, 49.3% and 23.2%. The genotype distribution was unchanged when CT IgG status was introduced in the analyses.
Conclusion
The CD14 -260 C>T genotype distributions were identical in all three cohorts, showing that this polymorphism is not involved in the susceptibility to or severity of sequelae of C. trachomatis infection.
Publisher
Springer Science and Business Media LLC
Reference53 articles.
1. Numazaki K, Asanuma H, Niida Y: Chlamydia trachomatis infection in early neonatal period. BMC Infect Dis. 2003, 3: 2-10.1186/1471-2334-3-2.
2. Smieja M, Mahony J, Petrich A, Boman J, Chernesky M: Association of circulating Chlamydia pneumoniae DNA with cardiovascular disease: a systematic review. BMC Infect Dis. 2002, 2: 21-10.1186/1471-2334-2-21.
3. Smieja M, Leigh R, Petrich A, Chong S, Kamada D, Hargreave FE, Goldsmith CH, Chernesky M, Mahony JB: Smoking, season, and detection of Chlamydia pneumoniae DNA in clinically stable COPD patients. BMC Infect Dis. 2002, 2: 12-10.1186/1471-2334-2-12.
4. Wira CR, Fahey JV, Sentman CL, Pioli PA, Shen L: Innate and adaptive immunity in female genital tract: cellular responses and interactions. Immunological Reviews. 2005,
5. Workowski KA, Stevens CE, Suchland RJ, Holmes KK, Eschenbach DA, Pettinger MB, Stamm WE: Clinical manifestations of genital infection due to Chlamydia trachomatis in women: differences related to serovar. Clin Infect Dis. 1994, 19: 756-760.
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献