Detection of Norovirus genogroup I and II by multiplex real-time RT- PCR using a 3'-minor groove binder-DNA probe

Author:

Hoehne Marina,Schreier Eckart

Abstract

Abstract Background Due to an increasing number of norovirus infections in the last years rapid, specific, and sensitive diagnostic tools are needed. Reverse transcriptase-polymerase chain reactions (RT-PCR) have become the methods of choice. To minimize the working time and the risk of carryover contamination during the multi-step procedure of PCR the multiplex real-time RT-PCR for the simultaneous detection of genogroup I (GI) and II (GII) offers advantages for the handling of large amounts of clinical specimens. Methods We have developed and evaluated a multiplex one-tube RT-PCR using a combination of optimized GI and GII specific primers located in the junction between ORF1 and ORF2 of the norovirus genome. For the detection of GI samples, a 3'- minor groove binder-DNA probe (GI-MGB-probe) were designed and used for the multiplex real-time PCR. Results Comparable results to those of our in-house nested PCR and monoplex real-time-PCR were only obtained using the GI specific MGB-probe. The MGB-probe forms extremely stable duplexes with single-stranded DNA targets, which enabled us to design a shorter probe (length 15 nucleotides) hybridizing to a more conserved part of the GI sequences. 97 % of 100 previously norovirus positive specimens (tested by nested PCR and/or monoplex real-time PCR) were detected by the multiplex real-time PCR. A broad dynamic range from 2 × 10^1 to 2 × 10^7 genomic equivalents per assay using plasmid DNA standards for GI and GII were obtained and viral loads between 2.5 × 10^2 and 2 × 10^12 copies per ml stool suspension were detected. Conclusion The one-tube multiplex RT real-time PCR using a minor groove binder -DNA probe for GI is a fast, specific, sensitive and cost-effective tool for the detection of norovirus infections in both mass outbreaks and sporadic cases and may have also applications in food and environmental testing.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3