Molecular typing and characterization of nasal carriage and community-onset infection methicillin-susceptible Staphylococcus aureusisolates in two Taiwan medical centers

Author:

Chen Feng-Jui,Siu Leung-Kei Kristopher,Lin Jung-Chung,Wang Chen-Her,Lu Po-Liang

Abstract

Abstract Background Compared to methicillin-resistant Staphylococcus aureus (MRSA), characteristics of nasal carriage and community-onset infection methicillin-susceptible S. aureus (MSSA) are less well known. No characteristics of MSSA in Taiwan have been reported previously. Methods We analyzed 100 nasal carriage and 34 community-onset infection MSSA isolates by pulsed-field gel electrophoresis (PFGE), spa typing, multi-locus sequence typing, agr typing, virulence gene detection, growth rate measurement, and antimicrobial susceptibility. Results In PFGE analysis, most (68%) infection isolates could be grouped in one major cluster using a 70% similarity cutoff. In contrast, only 17% of nasal carriage isolates belonged to this cluster. A similar classification was obtained using Based Upon Repeat Pattern analysis of spa types. The MSSA infection isolates cluster was closely related to the virulent clones of clonal complex 1 (CC1), which includes strains MW2 (USA400) and MSSA476. ST188 of CC1 was the predominant clone detected for community-onset MSSA infections. The only common ST type for MSSA and MRSA in Taiwan was ST59, the community-associated MRSA clone. It is likely, therefore, that MRSA originated from MSSA clones through SCCmec transfer. Compared to nasal carriage isolates, infection isolates less frequently possessed egc, tst and hlg genes, were more commonly susceptible to erythromycin (91% vs. 54%), and had shorter mean doubling times (38 min vs. 55 min). Conclusions The clonal lineages of MSSA nasal carriage and infection isolates differed in our sample of Taiwan isolates. Most community-onset MSSA infections resulted from relatively few clonal lineages. Nasal carriage isolates more frequently possessed the egc, tst and hlg genes, were more resistant to erythromycin, and grew more slowly.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3