CD36 deficiency attenuates experimental mycobacterial infection

Author:

Hawkes Michael,Li Xiaoming,Crockett Maryanne,Diassiti Angelina,Finney Constance,Min-Oo Gundula,Liles W Conrad,Liu Jun,Kain Kevin C

Abstract

Abstract Background Members of the CD36 scavenger receptor family have been implicated as sensors of microbial products that mediate phagocytosis and inflammation in response to a broad range of pathogens. We investigated the role of CD36 in host response to mycobacterial infection. Methods Experimental Mycobacterium bovis Bacillus Calmette-Guérin (BCG) infection in Cd36 +/+ and Cd36 -/- mice, and in vitro co-cultivation of M. tuberculosis, BCG and M. marinum with Cd36 +/+ and Cd36 -/- murine macrophages. Results Using an in vivo model of BCG infection in Cd36 +/+ and Cd36 -/- mice, we found that mycobacterial burden in liver and spleen is reduced (83% lower peak splenic colony forming units, p < 0.001), as well as the density of granulomas, and circulating tumor necrosis factor (TNF) levels in Cd36 -/- animals. Intracellular growth of all three mycobacterial species was reduced in Cd36 -/- relative to wild type Cd36 +/+ macrophages in vitro. This difference was not attributable to alterations in mycobacterial uptake, macrophage viability, rate of macrophage apoptosis, production of reactive oxygen and/or nitrogen species, TNF or interleukin-10. Using an in vitro model designed to recapitulate cellular events implicated in mycobacterial infection and dissemination in vivo (i.e., phagocytosis of apoptotic macrophages containing mycobacteria), we demonstrated reduced recovery of viable mycobacteria within Cd36 -/- macrophages. Conclusions Together, these data indicate that CD36 deficiency confers resistance to mycobacterial infection. This observation is best explained by reduced intracellular survival of mycobacteria in the Cd36 -/- macrophage and a role for CD36 in the cellular events involved in granuloma formation that promote early bacterial expansion and dissemination.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3