In situ molecular identification of the Influenza A (H1N1) 2009 Neuraminidase in patients with severe and fatal infections during a pandemic in Mexico City

Author:

Ocadiz-Delgado Rodolfo,Albino-Sanchez Martha Estela,Garcia-Villa Enrique,Aguilar-Gonzalez Maria Guadalupe,Cabello Carlos,Rosete Dora,Mejia Fidencio,Manjarrez-Zavala Maria Eugenia,Ondarza-Aguilera Carmen,Rivera-Rosales Rosa Ma,Gariglio Patricio

Abstract

Abstract Background In April 2009, public health surveillance detected an increased number of influenza-like illnesses in Mexico City’s hospitals. The etiological agent was subsequently determined to be a spread of a worldwide novel influenza A (H1N1) triple reassortant. The purpose of the present study was to demonstrate that molecular detection of pandemic influenza A (H1N1) 2009 strains is possible in archival material such as paraffin-embedded lung samples. Methods In order to detect A (H1N1) virus sequences in archived biological samples, eight paraffin-embedded lung samples from patients who died of pneumonia and respiratory failure were tested for influenza A (H1N1) Neuraminidase (NA) RNA using in situ RT-PCR. Results We detected NA transcripts in 100% of the previously diagnosed A (H1N1)-positive samples as a cytoplasmic signal. No expression was detected by in situ RT-PCR in two Influenza-like Illness A (H1N1)-negative patients using standard protocols nor in a non-related cervical cell line. In situ relative transcription levels correlated with those obtained when in vitro RT-PCR assays were performed. Partial sequences of the NA gene from A (H1N1)-positive patients were obtained by the in situ RT-PCR-sequencing method. Sequence analysis showed 98% similarity with influenza viruses reported previously in other places. Conclusions We have successfully amplified specific influenza A (H1N1) NA sequences using stored clinical material; results suggest that this strategy could be useful when clinical RNA samples are quantity limited, or when poor quality is obtained. Here, we provide a very sensitive method that specifically detects the neuraminidase viral RNA in lung samples from patients who died from pneumonia caused by Influenza A (H1N1) outbreak in Mexico City.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

Reference50 articles.

1. Perez-Padilla R, de la Rosa-Zamboni D, Ponce de Leon S, Hernandez M, Quiñones-Falconi F, Bautista E, Ramirez-Venegas A, Rojas-Serrano J, Ormsby CE, Corrales A, Higuera A, Mondragon E, Cordova-Villalobos JA: INER Working Group on Influenza. Pneumonia and respiratory failure from swine-origin influenza A(H1N1) in Mexico. N Engl J Med. 2009, 361: 680-689. 10.1056/NEJMoa0904252. [PubMed: 19564631]

2. Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, Hollingsworth TD, Griffin J, Baggaley RF, Jenkins HE, Lyons EJ, Jombart T, Hinsley WR, Grassly NC, Balloux F, Ghani AC, Ferguson NM, Rambaut A, Pybus OG, Lopez-Gatell H, Alpuche-Aranda CM, Chapela IB, Zavala EP, Guevara DM, Checchi F, Garcia E, Hugonnet S, Roth C: WHO Rapid Pandemic Assessment Collaboration. Pandemic potential of a strain of influenza A (H1N1): early findings. Science. 2009, 324: 1557-1561. 10.1126/science.1176062. [PubMed: 19433588]

3. Arias CF, Escalera-Zamudio M, Soto-Del Río Mde L, Cobián-Güemes AG, Isa P, López S: Molecular anatomy of 2009 influenza virus A (H1N1). Arch Med Res. 2009, 40: 643-654. 10.1016/j.arcmed.2009.10.007. [PubMed: 20304251]

4. Zepeda-Lopez HM, Perea-Araujo L, Miliar-García A, Dominguez-López A, Xoconostle-Cázarez B, Lara-Padilla E, Ramírez Hernandez JA, Sevilla-Reyes E, Orozco ME, Ahued-Ortega A, Villaseñor-Ruiz I, Garcia-Cavazos RJ, Teran LM: Inside the outbreak of the 2009 influenza A (H1N1)v virus in Mexico. PLoS One. 2010, 5: e13256-10.1371/journal.pone.0013256. [PubMed: 20949040]

5. Wright P, Neumann G, Kawaoka Y: Orthomyxoviruses. Fields Virology. Edited by: Knipe D, Howley P. 2006, Lippincott Williams & Wilkins, Philadelphia, 1691-1740. 5

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3