Bifunctional TaqII restriction endonuclease: redefining the prototype DNA recognition site and establishing the Fidelity Index for partial cleaving

Author:

Żylicz-Stachula Agnieszka,Żołnierkiewicz Olga,Śliwińska Katarzyna,Jeżewska-Frąckowiak Joanna,Skowron Piotr M

Abstract

Abstract Background The TaqII enzyme is a member of the Thermus sp. enzyme family that we propounded previously within Type IIS restriction endonucleases, containing related thermophilic bifunctional endonucleases-methyltransferases from various Thermus sp.: TaqII, Tth111II, TthHB27I, TspGWI, TspDTI and TsoI. These enzymes show significant nucleotide and amino acid sequence similarities, a rare phenomenon among restriction endonucleases, along with similarities in biochemical properties, molecular size, DNA recognition sequences and cleavage sites. They also feature some characteristics of Types I and III. Results Barker et al. reported the Type IIS/IIC restriction endonuclease TaqII as recognizing two distinct cognate site variants (5'-GACCGA-3' and 5'-CACCCA-3') while cleaving 11/9 nucleotides downstream. We used four independent methods, namely, shotgun cloning and sequencing, restriction pattern analysis, digestion of particular custom substrates and GeneScan analysis, to demonstrate that the recombinant enzyme recognizes only 5'-GACCGA-3' sites and cleaves 11/9 nucleotides downstream. We did not observe any 5'-CACCCA-3' cleavage under a variety of conditions and site arrangements tested. We also characterized the enzyme biochemically and established new digestion conditions optimal for practical enzyme applications. Finally, we developed and propose a new version of the Fidelity Index - the Fidelity Index for Partial Cleavage (FI-PC). Conclusions The DNA recognition sequence of the bifunctional prototype TaqII endonuclease-methyltransferase from Thermus aquaticus has been redefined as recognizing only 5'-GACCGA-3' cognate sites. The reaction conditions (pH and salt concentrations) were designed either to minimize (pH = 8.0 and 10 mM ammonium sulphate) or to enhance star activity (pH = 6.0 and no salt). Redefinition of the recognition site and reaction conditions makes this prototype endonuclease a useful tool for DNA manipulation; as yet, this enzyme has no practical applications. The extension of the Fidelity Index will be helpful for DNA manipulation with enzymes only partially cleaving DNA.

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3