Comparison of interactions between beta-hairpin decapeptides and SDS/DPC micelles from experimental and simulation data

Author:

Langham Allison A,Waring Alan J,Kaznessis YN

Abstract

Abstract Background We applied a combined experimental and computational approach to ascertain how peptides interact with host and microbial membrane surrogates, in order to validate simulation methodology we hope will enable the development of insights applicable to the design of novel antimicrobial peptides. We studied the interactions of two truncated versions of the potent, but cytotoxic, antimicrobial octadecapeptide protegrin-1, PC-72 [LCYCRRRFCVC] and PC-73 [CYCRRRFCVC]. Results We used a combination of FTIR, fluorescence spectroscopy and molecular dynamics simulations to examine the peptides' interactions with sodium dodecylsulfate (SDS) and dodecylphosphocholine (DPC) micelles. The relative amounts of secondary structure determined by FTIR agreed with those from the simulations. Fluorescence spectroscopy, deuterium exchange experiments and the simulations all indicate that neither peptide embeds itself deeply into the micelle core. Although molecular simulations placed both peptides at the micelle-water interface, further examination revealed differences in how certain residues interacted with the micelle core. Conclusion We demonstrate here the accuracy of molecular dynamics simulations methods through comparison with experiments, and have used the simulation results to enhance the understanding of how these two peptides interact with the two types of micelles. We find agreement between simulation and experimental results in the final structure of the peptides and in the peptides final conformation with respect to the micelle. Looking in depth at the peptide interactions, we find differences in the interactions between the two peptides from the simulation data; Leu-1 on PC-72 interacts strongly with the SDS micelle, though the interaction is not persistent – the residue withdraws and inserts into the micelle throughout the simulation.

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology,Biochemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3