Author:
Lin Shu-Chuan,Liu Wei-Ting,Liu Shi-Hwei,Chou Wei-I,Hsiung Bor-Kai,Lin I-Ping,Sheu Chia-Chin,Dah-Tsyr Chang Margaret
Abstract
Abstract
Background
Rhizopus oryzae glucoamylase (Ro GA) consists of three domains: an amino (N)-terminal raw starch-binding domain (SBD), a glycosylated linker domain, and a carboxy (C)-terminal catalytic domain. The 36-amino-acid linker region (residues 132–167) connects the two functional domains, but its structural and functional roles are unclear.
Results
To characterize the linker sequences of Ro GA and its involvement in protein expression, a number of Ro GA variants containing deletions and mutations were constructed and expressed in Saccharomyces cerevisiae. Deletion analyses demonstrate that the linker region, especially within residues 161 to 167, is required for protein expression. In addition, site-directed mutagenesis and deglycosylation studies reveal that the linker region of Ro GA contains both N- and O-linked carbohydrate moieties, and the N-linked oligosaccharides play a major role in the formation of active enzyme. Although the linker segment itself appears to have no ordered secondary structural conformation, the flexible region indeed contributes to the stabilization of functional N- and C-terminal domains.
Conclusion
Our data provide direct evidence that the length, composition, and glycosylation of the interdomain linker play a central role in the structure and function of Ro GA.
Publisher
Springer Science and Business Media LLC
Subject
Molecular Biology,Biochemistry
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献