Isolation, characterization and molecular cloning of Duplex-Specific Nuclease from the hepatopancreas of the Kamchatka crab

Author:

Anisimova Veronika E,Rebrikov Denis V,Shagin Dmitry A,Kozhemyako Valery B,Menzorova Natalia I,Staroverov Dmitry B,Ziganshin Rustam,Vagner Laura L,Rasskazov Valery A,Lukyanov Sergey A,Shcheglov Alex S

Abstract

Abstract Background Nucleases, which are key components of biologically diverse processes such as DNA replication, repair and recombination, antiviral defense, apoptosis and digestion, have revolutionized the field of molecular biology. Indeed many standard molecular strategies, including molecular cloning, studies of DNA-protein interactions, and analysis of nucleic acid structures, would be virtually impossible without these versatile enzymes. The discovery of nucleases with unique properties has often served as the basis for the development of modern molecular biology methods. Thus, the search for novel nucleases with potentially exploitable functions remains an important scientific undertaking. Results Using degenerative primers and the rapid amplification of cDNA ends (RACE) procedure, we cloned the Duplex-Specific Nuclease (DSN) gene from the hepatopancreas of the Kamchatka crab and determined its full primary structure. We also developed an effective method for purifying functional DSN from the crab hepatopancreas. The isolated enzyme was highly thermostable, exhibited a broad pH optimum (5.5 – 7.5) and required divalent cations for activity, with manganese and cobalt being especially effective. The enzyme was highly specific, cleaving double-stranded DNA or DNA in DNA-RNA hybrids, but not single-stranded DNA or single- or double-stranded RNA. Moreover, only DNA duplexes containing at least 9 base pairs were effectively cleaved by DSN; shorter DNA duplexes were left intact. Conclusion We describe a new DSN from Kamchatka crab hepatopancreas, determining its primary structure and developing a preparative method for its purification. We found that DSN had unique substrate specificity, cleaving only DNA duplexes longer than 8 base pairs, or DNA in DNA-RNA hybrids. Interestingly, the DSN primary structure is homologous to well-known Serratia-like non-specific nucleases structures, but the properties of DSN are distinct. The unique substrate specificity of DSN should prove valuable in certain molecular biology applications.

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology,Biochemistry

Reference20 articles.

1. Rangarajan ES, Shankar V: Sugar non-specific endonucleases. FEMS Microbiol Rev. 2001, 25 (5): 583-613.

2. Zhulidov PA, Bogdanova EA, Shcheglov AS, Shagina IA, Vagner LL, Khazpekov GL, Kozhemiako VV, Luk'ianov SA, Shagin DA: [A method for the preparation of normalized cDNA libraries enriched with full-length sequences]. Bioorg Khim. 2005, 31 (2): 186-194.

3. Zhulidov PA, Bogdanova EA, Shcheglov AS, Vagner LL, Khaspekov GL, Kozhemyako VB, Matz MV, Meleshkevitch E, Moroz LL, Lukyanov SA, Shagin DA: Simple cDNA normalization using kamchatka crab duplex-specific nuclease. Nucleic Acids Res. 2004, 32 (3): e37-

4. Peng RH, Xiong AS, Xue Y, Li X, Liu JG, Cai B, Yao QH: Kamchatka crab duplex-specific nuclease-mediated transcriptome subtraction method for identifying long cDNAs of differentially expressed genes. Anal Biochem. 2008, 372 (2): 148-155.

5. Al'tshuler IM, Zhulidov PA, Bogdanova EA, Mudrik NN, Shagin DA: [Application of the duplex-specific nuclease preference method to the analysis of point mutations in human genes]. Bioorg Khim. 2005, 31 (6): 627-636.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3