Effect of polyamines and synthetic polyamine-analogues on the expression of antizyme (AtoC) and its regulatory genes

Author:

Filippou Panagiota S,Lioliou Efthimia E,Panagiotidis Christos A,Athanassopoulos Constantinos M,Garnelis Thomas,Papaioannou Dionyssios,Kyriakidis Dimitrios A

Abstract

Abstract Background In bacteria, the biosynthesis of polyamines is modulated at the level of transcription as well as post-translationally. Antizyme (Az) has long been identified as a non-competitive protein inhibitor of polyamine biosynthesis in E. coli. Az was also revealed to be the product of the atoC gene. AtoC is the response regulator of the AtoS-AtoC two-component system and it functions as the positive transcriptional regulator of the atoDAEB operon genes, encoding enzymes involved in short chain fatty acid metabolism. The antizyme is referred to as AtoC/Az, to indicate its dual function as both a transcriptional and post-translational regulator. Results The roles of polyamines on the transcription of atoS and atoC genes as well as that of atoDAEB(ato) operon were studied. Polyamine-mediated induction was tested both in atoSC positive and negative E. coli backgrounds by using β-galactosidase reporter constructs carrying the appropriate promoters patoDAEB, patoS, patoC. In addition, a selection of synthetic polyamine analogues have been synthesized and tested for their effectiveness in inducing the expression of atoC/Az, the product of which plays a pivotal role in the feedback inhibition of putrescine biosynthesis and the transcriptional regulation of the ato operon. The effects of these compounds were also determined on the ato operon expression. The polyamine analogues were also tested for their effect on the activity of ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis and on the growth of polyamine-deficient E. coli. Conclusion Polyamines, which have been reported to induce the protein levels of AtoC/Az in E. coli, act at the transcriptional level, since they cause activation of the atoC transcription. In addition, a series of polyamine analogues were studied on the transcription of atoC gene and ODC activity.

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology,Biochemistry

Reference48 articles.

1. Tabor CW, Tabor H: Polyamines in microorganisms. Microbiol Rev. 1985, 49: 81-99.

2. Canellakis ES, Viceps-Madore D, Kyriakidis DA, Heller JS: The regulation and function of ornithine decarboxylase and of the polyamines. Current Topics in Cellular Regulation. Edited by: Horecker BL, Stadtman ER. 1979, New York: Academic Press Inc, 15: 155-202.

3. Pegg AE: Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988, 48: 759-774.

4. Marton LJ, Pegg AE: Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol. 1995, 35: 55-91. 10.1146/annurev.pa.35.040195.000415.

5. Cohen SS: A guide to the polyamines. 1998, New York: Oxford University Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3