Author:
Li Yuejin,Liu Na,Huang Damao,Zhang Zhenlin,Peng Zhengke,Duan Chaojun,Tang Xiaowei,Tan Gongjun,Yan Guangrong,Mei Wenhua,Tang Faqing
Abstract
Abstract
Background
Nasopharyngeal carcinoma (NPC) has a high metastatic feature. N,N
′-Dinitrosopiperazine (DNP) is involved in NPC metastasis, but its mechanism is not clear. The aim of this study is to reveal the pathogenesis of DNP-involved metastasis. 6-10B cells with low metastasis are from NPC cell line SUNE-1, were used to investigate the mechanism of DNP-mediated NPC metastasis.
Results
6-10B cells were grown in DMEM containing 2H4-L-lysine and 13C 6 15 N4-L-arginine or conventional L-lysine and L-arginine, and identified the incorporation of amino acid by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Labeled 6-10B cells were treated with DNP at 0 -18 μM to establish the non-cytotoxic concentration (NCC) range. NCC was 0 -10 μM. Following treatment with DNP at this range, the motility and invasion of cells were detected in vitro, and DNP-mediated metastasis was confirmed in the nude mice. DNP increased 6-10B cell metastasis in vitro and vivo. DNP-induced protein expression was investigated using a quantitative proteomic. The SILAC-based approach quantified 2698 proteins, 371 of which showed significant change after DNP treatment (172 up-regulated and 199 down-regulated proteins). DNP induced the change in abundance of mitochondrial proteins, mediated the status of oxidative stress and the imbalance of redox state, increased cytoskeletal protein, cathepsin, anterior gradient-2, and clusterin expression. DNP also increased the expression of secretory AKR1B10, cathepsin B and clusterin 6-10B cells. Gene Ontology and Ingenuity Pathway analysis showed that DNP may regulate protein synthesis, cellular movement, lipid metabolism, molecular transport, cellular growth and proliferation signaling pathways.
Conclusion
DNP may regulate cytoskeletal protein, cathepsin, anterior gradient-2, and clusterin expression, increase NPC cells motility and invasion, is involved NPC metastasis.
Publisher
Springer Science and Business Media LLC
Subject
Molecular Biology,Biochemistry
Reference47 articles.
1. Wei WI, Sham JST: Nasopharyngeal carcinoma. Lancet. 2005, 365 (9476): 2041-2054. 10.1016/S0140-6736(05)66698-6.
2. Cao SM, Simons MJ, Qian CN: The prevalence and prevention of nasopharyngeal carcinoma in China. Chin J Cancer. 2011, 30 (2): 114-119. 10.5732/cjc.010.10377.
3. Lo KW, To KF, Huang DP: Focus on nasopharyngeal carcinoma. Cancer Cell. 2004, 5 (5): 423-428. 10.1016/S1535-6108(04)00119-9.
4. Yu MC, Ho JH, Lai SH, Henderson BE: Cantonese-style salted fish as a cause of nasopharyngeal carcinoma: report of a case–control study in Hong Kong. Cancer Res. 1986, 46 (2): 956-961.
5. Jia WH, Luo XY, Feng BJ, Ruan HL, Bei JX, Liu WS, Qin HD, Feng QS, Chen LZ, Yao SY: Traditional Cantonese diet and nasopharyngeal carcinoma risk: a large-scale case–control study in Guangdong. China. BMC Cancer. 2010, 10: 446-10.1186/1471-2407-10-446.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献