On the role of generative artificial intelligence in the development of brain-computer interfaces

Author:

Eldawlatly Seif

Abstract

AbstractSince their inception more than 50 years ago, Brain-Computer Interfaces (BCIs) have held promise to compensate for functions lost by people with disabilities through allowing direct communication between the brain and external devices. While research throughout the past decades has demonstrated the feasibility of BCI to act as a successful assistive technology, the widespread use of BCI outside the lab is still beyond reach. This can be attributed to a number of challenges that need to be addressed for BCI to be of practical use including limited data availability, limited temporal and spatial resolutions of brain signals recorded non-invasively and inter-subject variability. In addition, for a very long time, BCI development has been mainly confined to specific simple brain patterns, while developing other BCI applications relying on complex brain patterns has been proven infeasible. Generative Artificial Intelligence (GAI) has recently emerged as an artificial intelligence domain in which trained models can be used to generate new data with properties resembling that of available data. Given the enhancements observed in other domains that possess similar challenges to BCI development, GAI has been recently employed in a multitude of BCI development applications to generate synthetic brain activity; thereby, augmenting the recorded brain activity. Here, a brief review of the recent adoption of GAI techniques to overcome the aforementioned BCI challenges is provided demonstrating the enhancements achieved using GAI techniques in augmenting limited EEG data, enhancing the spatiotemporal resolution of recorded EEG data, enhancing cross-subject performance of BCI systems and implementing end-to-end BCI applications. GAI could represent the means by which BCI would be transformed into a prevalent assistive technology, thereby improving the quality of life of people with disabilities, and helping in adopting BCI as an emerging human-computer interaction technology for general use.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3