Biomechanical validation of additively manufactured artificial femoral bones

Author:

Metzner F.,Neupetsch C.,Carabello A.,Pietsch M.,Wendler T.,Drossel W.-G.

Abstract

AbstractReplicating the mechanical behavior of human bones, especially cancellous bone tissue, is challenging. Typically, conventional bone models primarily consist of polyurethane foam surrounded by a solid shell. Although nearly isotropic foam components have mechanical properties similar to cancellous bone, they do not represent the anisotropy and inhomogeneity of bone architecture. To consider the architecture of bone, models were developed whose core was additively manufactured based on CT data. This core was subsequently coated with glass fiber composite. Specimens consisting of a gyroid-structure were fabricated using fused filament fabrication (FFF) techniques from different materials and various filler levels. Subsequent compression tests showed good accordance between the mechanical behavior of the printed specimens and human bone. The unidirectional fiberglass composite showed higher strength and stiffness than human cortical bone in 3-point bending tests, with comparable material behaviors being observed. During biomechanical investigation of the entire assembly, femoral prosthetic stems were inserted into both artificial and human bones under controlled conditions, while recording occurring forces and strains. All of the artificial prototypes, made of different materials, showed analogous behavior to human bone. In conclusion, it was shown that low-cost FFF technique can be used to generate valid bone models and selectively modify their properties by changing the infill.

Funder

Universität Leipzig

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3