Multi-parameter viscoelastic material model for denture adhesives based on time-temperature superposition and multiple linear regression analysis

Author:

Ramakrishnan Anantha Narayanan,Reymann Josephine,Ludtka Christopher,Kiesow Andreas,Schwan Stefan

Abstract

Abstract Background Restorative solutions designed for edentulous patients such as dentures and their accompanying denture adhesives operate in the complex and dynamic environment represented by human oral physiology. Developing material models accounting for the viscoelastic behavior of denture adhesives can facilitate their further optimization within that unique physiological environment. This study aims to statistically quantify the degree of significance of three physiological variables - namely: temperature, adhesive swelling, and pH - on denture adhesive mechanical behavior. Further, based on these statistical significance estimations, a previously-developed viscoelastic material modelling approach for such denture adhesives is further expanded and developed to capture these variables’ effects on mechanical behavior. Methods In this study a comparable version of Denture adhesive Corega Comfort was analysed rheologically using the steady state frequency sweep tests. The experimentally derived rheological storage and loss modulus values for the selected physiological variables were statistically analyzed using multi parameter linear regression analysis and the Pearson’s coefficient technique to understand the significance of each individual parameter on the relaxation spectrum of the denture adhesive. Subsequently, the parameters are incorporated into a viscoelastic material model based on Prony series discretization and time-temperature superposition, and the mathematical relationship for the loss modulus is deduced. Results The results of this study clearly indicated that the variation in both the storage and loss modulus values can be accurately predicted using the oral cavity physiological parameters of temperature, swelling ratio, and pH with an adjusted R2 value of 0.85. The R2 value from the multi-parameter regression analysis indicated that the predictor variables can estimate the loss and storage modulus with a reasonable accuracy for at least 85% of the rheologically determined continuous relaxation spectrum with a confidence level of 98%. The Pearson’s coefficient for the independent variables indicated that temperature and swelling have a strong influence on the loss modulus, whereas pH had a weak influence. Based on statistical analysis, these mathematical relationships were further developed in this study. Conclusions This multi-parameter viscoelastic material model is intended to facilitate future detailed numerical investigations performed with implementation of denture adhesives using the finite element method.

Funder

Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3