Quantitative hormone therapy follow-up in an ER+/ERαKD mouse tumor model using FDG and [11C]-methionine PET imaging

Author:

Paquette Michel,Tremblay Sébastien,Bénard Francois,Lecomte Roger

Abstract

Abstract Background The estrogen receptor α (ERα) is known to play an important role in the modulation of tumor response to hormone therapy. In this work, the effect of different hormone therapies on tumors having different ERα expression levels was followed up in vivo in a mouse model by PET imaging using 2-deoxy-2-[18F]fluoro-d-glucose (FDG) and [11C]-methionine ([11C]-MET). A new model of MC7-L1 ERα-knockdown (ERαKD) tumor cell lines was designed as a negative estrogen receptor control to follow up the effects of changes in ERα expression on the early metabolic tumor response to different hormone therapies. Methods MC7-L1 (ER+) and MC7-L1 ERα-knockdown cell lines were implanted subcutaneously in Balb/c mice and allowed to grow up to 4 mm in diameter. Animals were separated into 4 groups (n = 4 or 5) and treated with a pure antiestrogen (fulvestrant), an aromatase inhibitor (letrozole), a selective estrogen receptor modulator (tamoxifen), or not treated (control). Tumor metabolic activity was assessed by PET imaging with FDG and [11C]-MET at days 0 (before treatment), 7, and 14 after the treatment. Tumor uptake of each radiotracer in %ID/g was measured for each tumor at each time point and compared to tumor growth. Quantitative PCR (qPCR) was performed to verify the expression of breast cancer-related genes (ERα, ErbB2, progesterone receptor (PR), and BRCA1) in each tumor cell lines. Results While both ER+ and ERαKD tumors had similar uptake of both radiotracers without treatment, higher uptake values were generally seen in ERαKD tumors after 7 and 14 days of treatment, indicating that ERαKD tumors behave in a similar fashion as hormone-unresponsive tumors. Furthermore, the ERα-specific downregulation induced a slight PR expression decrease and overexpression of BRCA1 and ErbB2. Conclusion The results indicate that the proposed ER+/ERαKD tumor-bearing mouse model is suitable to test pure antiestrogen and aromatase inhibitor therapies in vivo in a preclinical setting and could help to elucidate the impact of ERα levels on tumor response to hormone therapy.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3