Improved effect of a mitochondria-targeted antioxidant on hydrogen peroxide-induced oxidative stress in human retinal pigment epithelium cells

Author:

Kim Myung Hee,Kim Do-Hun,Yang Su Geun,Kim Dae Yu

Abstract

Abstract Background Oxidative damage to retinal pigment epithelial (RPE) cells contributes to the development of age-related macular degeneration, which is among the leading causes of visual loss in elderly people. In the present study, we evaluated the protective role of triphenylphosphonium (TPP)-Niacin against hydrogen peroxide (H2O2)-induced oxidative stress in RPE cells. Methods The cellular viability, lactate dehydrogenase release, reactive oxygen species (ROS) generation, and mitochondrial function of retinal ARPE-19 cells were determined under treatment with H2O2 or pre-treatment with TPP-Niacin. The expression level of mitochondrial related genes and some transcription factors were assessed using real-time polymerase chain reaction (RT-qPCR). Results TPP-Niacin significantly improved cell viability, reduced ROS generation, and increased the antioxidant enzymes in H2O2-treated ARPE-19 cells. Mitochondrial dysfunction from the H2O2-induced oxidative stress was also considerably diminished by TPP-Niacin treatment, along with reduction of the mitochondrial membrane potential (MMP) and upregulation of the mitochondrial-associated gene. In addition, TPP-Niacin markedly enhanced the expression of transcription factors (PGC-1α and NRF2) and antioxidant-associated genes (especially HO-1 and NQO-1). Conclusion We verified the protective effect of TPP-Niacin against H2O2-induced oxidative stress in RPE cells. TPP-Niacin is believed to protect against mitochondrial dysfunction by upregulating antioxidant-related genes, such as PGC-1α, NRF2, HO-1, and NQO-1, in RPE cells.

Funder

Ministry of Education

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3