Author:
Mehrpour Omid,Saeedi Farhad,Hoyte Christopher,Goss Foster,Shirazi Farshad M.
Abstract
Abstract
Background
With diabetes incidence growing globally and metformin still being the first-line for its treatment, metformin’s toxicity and overdose have been increasing. Hence, its mortality rate is increasing. For the first time, we aimed to study the efficacy of machine learning algorithms in predicting the outcome of metformin poisoning using two well-known classification methods, including support vector machine (SVM) and decision tree (DT).
Methods
This study is a retrospective cohort study of National Poison Data System (NPDS) data, the largest data repository of poisoning cases in the United States. The SVM and DT algorithms were developed using training and test datasets. We also used precision-recall and ROC curves and Area Under the Curve value (AUC) for model evaluation.
Results
Our model showed that acidosis, hypoglycemia, electrolyte abnormality, hypotension, elevated anion gap, elevated creatinine, tachycardia, and renal failure are the most important determinants in terms of outcome prediction of metformin poisoning. The average negative predictive value for the decision tree and SVM models was 92.30 and 93.30. The AUC of the ROC curve of the decision tree for major, minor, and moderate outcomes was 0.92, 0.92, and 0.89, respectively. While this figure of SVM model for major, minor, and moderate outcomes was 0.98, 0.90, and 0.82, respectively.
Conclusions
In order to predict the prognosis of metformin poisoning, machine learning algorithms might help clinicians in the management and follow-up of metformin poisoning cases.
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Pharmacology
Reference32 articles.
1. Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2019;62(1):3–16.
2. Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.
3. Flory J, Lipska K. Metformin in 2019. JAMA. 2019;321(19):1926–7.
4. Leonaviciute D, Madsen B, Schmedes A, Buus NH, Rasmussen BS. Severe metformin poisoning successfully treated with simultaneous Venovenous hemofiltration and prolonged intermittent hemodialysis. Case Rep Crit Care. 2018;2018:3868051.
5. Kajbaf F, Lalau JD. The prognostic value of blood pH and lactate and metformin concentrations in severe metformin-associated lactic acidosis. BMC Pharmacol Toxicol. 2013;14:22. https://doi.org/10.1186/2050-6511-14-22 PMID: 23587368; PMCID: PMC3637618.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献