Tiotropium/Olodaterol treatment reduces cigarette smoke extract-induced cell death in BEAS-2B bronchial epithelial cells

Author:

Chen Cheng-hsiung,Li Yi-Rong,Lin Sheng-Hao,Chang Hsiu-Hui,Chai Woei-Horng,Chan Po-Chiang,Lin Ching-HsiungORCID

Abstract

Abstract Background Cigarette smoking is a critical risk factor for the destruction of lung parenchyma or the development of emphysema, which is characteristic of COPD. Disruption of epithelial layer integrity may contribute to lung injury following cigarette smoke extract (CSE) exposure. Tiotropium/olodaterol acts as a bronchodilator for COPD treatment; however, the effect of dual bronchodilators on epithelial cell injury and its underlying mechanism remain unclear. In this study, we evaluated the effect of tiotropium/olodaterol on CSE-mediated cell death and the underlying mechanisms. Methods Cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis, necrosis, and autophagy were evaluated using flow cytometry. Autophagy-related protein, phosphorylated ERK, expression was determined using Western blotting. Results Tiotropium/olodaterol significantly inhibited CSE-induced cell death, mitochondria dysfunction, and autophagy, which had no significant effect on apoptosis or necrosis in BEAS-2B human bronchial epithelial cells. Moreover, tiotropium/olodaterol attenuated CSE-induced upregulation of JNK. Conclusions CSE induced cell death and caused consistent patterns of autophagy and JNK activation in BEAS-2B human bronchial epithelial cells. Tiotropium/olodaterol treatment protected bronchial epithelial cells from CSE-induced injury and inhibited activation of autophagy and upregulation of JNK phosphorylation. These results indicate that tiotropium/olodaterol may protect epithelial cells from the deleterious effects of CSE exposure, which is associated with the regulation of autophagy and JNK activation.

Funder

Changhua Christian Hospital

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Pharmacology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3