Nalbuphine alleviates inflammation by down-regulating NF-κB in an acute inflammatory visceral pain rat model

Author:

Ruan Dijiao,Wang Yuanyuan,Li Sisi,Zhang Chao,Zheng Wenwen,Yu Cong

Abstract

Abstract Introduction Nalbuphine can relieve patients’ inflammation response after surgery compared to other opioid drugs. However, its molecular mechanism has not been clear. Activation of NF-κB signaling pathway under oxidative stress and inflammation can maintain pain escalation. Methods We firstly investigated the effect of nalbuphine on writhing test and mechanical allodynia using a rat model of inflammatory visceral pain (acetic acid (AA) administrated). Cytokines (including tumor necrosis factor (TNF)-α, Interleukin (IL)-1β, IL-2, and IL-6 in plasma were tested with ELISA technology. Expression levels of TNF-α, IκBα and p-NF-κB p65 at the spinal cord (L3–5) were measured by western blot or RT-qPCR. Results We found that the paw withdrawal threshold (PWT) values of rats were reduced in the model group, while the numbers of writhing, levels of IL-1β, IL-2, IL-6, and TNF-α in plasma, and p-NF-κB protein and its gene expressions in the lumbar spinal cord were up-regulated. Subcutaneously injection of nalbuphine (10 μg/kg) or PDTC (NF-κB inhibitor) attenuated acetic acid-induced inflammatory pain, and this was associated with reversal of up-regulated IL-1β, IL-2, IL-6, and TNF-α in both plasma and spinal cord. Furthermore, acetic acid increased p-NF-κB and TNF-α protein levels in the white matter of the spinal cord, which was attenuated by nalbuphine. These results suggested that nalbuphine can significantly ameliorate inflammatory pain via modulating the expression of NF-κB p65 as well as inflammation factors level in the spinal cord. Conclusion In conclusion, nalbuphine inhibits inflammation through down-regulating NF-κB pathway at the spinal cord in a rat model of inflammatory visceral pain.

Funder

the Joint project of Chongqing Health Commission and Science and Technology Bureau

CSA Clinical Research Fund

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3