Author:
Fahmy Heba M.,Ahmed Mostafa M.,Mohamed Ayman S.,Shams-Eldin Engy,Abd El-Daim Taiseer M.,El-Feky Amena S.,Mustafa Amira B.,Abd Alrahman Mai W.,Mohammed Faten F.,Fathy Mohamed M.
Abstract
AbstractAimsThe Blood-Brain Barrier (BBB) is a filter for most medications and blocks their passage into the brain. More effective drug delivery strategies are urgently needed to transport medications into the brain. This study investigated the biodistribution of thymoquinone (TQ) and the effect on enzymatic and non-enzymatic oxidative stress indicators in different brain regions, either in free form or incorporated into nanocarriers as mesoporous silica nanoparticles (MSNs). Lipid bilayer-coated MSNs.Materials and methodsMSNs and LB-MSNs were synthesized and characterized using a transmission electron microscope and dynamic light scattering to determine the particle size and zeta potential. TQ encapsulation efficiency and TQ's release profile from LB-MSNs were also examined. The impact of loading LB-MSNs with TQ-on-TQ delivery to different brain areas was examined using chromatographic measurement. Furthermore, nitric oxide, malondialdehyde (MDA), reduced glutathione, and catalase were evaluated as oxidant and antioxidant stress biomarkers.Key findingsThe LB-MSNs formulation successfully transported TQ to several areas of the brain, liver, and kidney, revealing a considerable increase in TQ delivery in the thalamus (81.74%) compared with that in the free TQ group and a considerable reduction in the cortex (−44%). The LB-MSNs formulation had no significant effect on TQ delivery in the cerebellum, striatum, liver, and kidney.SignificanceTQ was redistributed in different brain areas after being encapsulated in LB-MSNs, indicating that LB-MSNs have the potential to be developed as a drug delivery system for selective clinical application of specific brain regions.ConclusionsLB-MSNs are capable nanoplatforms that can be used to target medications precisely to specific brain regions
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Pharmacology
Reference49 articles.
1. Stützle M, Flamm J, Carle S, Schindowski K. Nose-to-Brain delivery of insulin for Alzheimer’s disease. ADMET DMPK. 2015;3:190–202.
2. Gonçalves MC. Sol-Gel Silica Nanoparticles in Medicine: A Natural Choice. Design, Synthesis and Products. Mol. 2018;23(2021).
3. Kwon S, Singh RK, Perez RA, Neel EAA, Kim HW, Chrzanowski W. Silica-based mesoporous nanoparticles for controlled drug delivery. 2013;4:1–18. https://doi.org/10.1177/2041731413503357.
4. Abouaitah K, Lojkowski W. Delivery of Natural Agents by Means of Mesoporous Silica Nanospheres as a Promising Anticancer Strategy. Pharm. 2021;13:143.
5. Baghirov H, Karaman D, Viitala T, Duchanoy A, Lou YR, Mamaeva V, et al. Feasibility study of the permeability and uptake of mesoporous silica nanoparticles across the blood-brain barrier. PLoS One. 2016;11.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献