Development of rosuvastatin flexible lipid-based nanoparticles: promising nanocarriers for improving intestinal cells cytotoxicity

Author:

Ahmed Tarek A.ORCID

Abstract

Abstract Background Rosuvastatin (RSV) is a poorly water-soluble drug that has an absolute oral bioavailability of only 20%. The aim of this work was to prepare a positively charged chitosan coated flexible lipid-based vesicles (chitosomes) and compare their characteristics to the corresponding negatively charged flexible liposomal nanoparticles (NPs) in order to develop new RSV nanocarrier systems. Methods Three formulation factors affecting the development of chitosomes nano-formulation were optimized for their effects on the particles size, entrapment efficiency (EE) and zeta potential. The optimized flexible chitosomes and their corresponding liposomal NPs were characterized for morphology, in vitro release, flexibility and intestinal cell viability. The half maximum inhibitory concentrations (IC50) for both formulations were calculated. Results The drug to lipid molar ratio, edge activator percent and the chitosan concentration were significantly affecting the characteristics of NPs. The optimized chitosomes nano-formulation exhibited larger size, higher EE and greater zeta potential value when compared to the corresponding liposomal NPs. Both formulations showed a spherical shape nanostructure with a marked outer shell for the chitosomes nano-formulation. Chitosomes illustrated an extended drug release profile when compared with the corresponding liposomal NPs and the prepared drug suspension. Flexibility of both vesicles was confirmed with superiority of liposomal NPs over chitosomes. RSV loaded chitosomes nano-formulation exhibited lower IC50 values and higher therapeutic window while liposomal NPs were compatible with the intestinal cells. Conclusions RSV loaded chitosomes nano-formulation could be considered as a promising nanocarrier system with a marked cytotoxic activity while, RSV loaded liposomal NPs are suitable nanocarrier to improve RSV activity in treatment of cardiovascular disorders.

Funder

King Abdulaziz University

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3