Abstract
Abstract
Background
Thioacetamide (TAA) is used in various fields, such as synthetic drugs, organic chemical synthesis, and materials chemistry. TAA is mainly used to establish animal liver injury models and other organ damage models to explore their mechanisms for helping patients with liver disease. Liver damage can lead to abnormal expression of some enzymes in the serum, so we detected the appropriate enzyme levels in the serum of SD rats to verify the damage of TAA to the liver. More importantly, TAA caused bone damage is barely understood. Therefore, our research aims to establish a rat model reflecting the acute bone damage injury caused by TAA.
Methods
The SD rats were intraperitoneally injected with normal saline (0.9%) or TAA (200 mg/kg, 400 mg/kg) for 1 month (once the other day). After the last intraperitoneal injection, serum samples from rats were used for biochemical tests. Masson staining is used to detect liver damage, and micro-CT is used to detect the changes in bone. Moreover, the three-point bending experiment was used to detect the force range of the hind limbs of SD rats.
Results
Compared with the control group, after the intraperitoneal injection of TAA, the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), uric acid (UA), total bile acid (TBA), alkaline phosphatase (ALP), carbamide (UREA) and creatinine (CREA) rose sharply, while the levels of serum content of total protein (TP), lactate dehydrogenase (LDH), calcium (Ca) and phosphorus (P) were severely reduced. After TAA administration, collagen fibers were deposited and liver fibrosis was obvious. Micro-CT results showed that the bone surface, tissue surface, bone volume, and tissue volume of rats with an intraperitoneal injection of TAA were significantly reduced. In addition, the bones of rats with an intraperitoneal injection of TAA can resist less pressure and are prone to fractures.
Conclusions
TAA can cause liver damage in SD rats, which is explained by the changes in serum biochemical indicators and the deposition of liver collagen. More importantly, TAA can reduce bone mineral density and increase the separation of bone trabeculae in SD rats, and finally lead to bone injury. This suggests that TAA may become an ideal model to investigate abnormal bone metabolism after liver injury.
Funder
the Natural Science Foundation of Zhejiang Province
Zhejiang Province Project of the Science Technology Department
Zhejiang Traditional Chinese Medicine Science and Technology Plan Project
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Pharmacology
Reference39 articles.
1. National Toxicology Program. Thioacetamide. Rep Carcinog. 2002;10:230–1.
2. Fitzhugh OG, Nelson AA. Liver Tumors in Rats Fed Thiourea or Thioacetamide. Science. 1948;108(2814):626–8.
3. Neal RA, Halpert J. Toxicology of thiono-sulfur compounds. Annu Rev Pharmacol Toxicol. 1982;22:321–39.
4. Chilakapati J, Shankar K, Korrapati MC, Hill RA, Mehendale HM. Saturation toxicokinetics of thioacetamide: role in initiation of liver injury. Drug Metab Dispos. 2005;33(12):1877–85.
5. Pallottini V, Martini C, Bassi AM, Romano P, Nanni G, Trentalance A. Rat HMGCoA reductase activation in thioacetamide-induced liver injury is related to an increased reactive oxygen species content. J Hepatol. 2006;44(2):368–74.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献