Abstract
Abstract
Background
Adolescents experience higher levels of non-adherence to HIV treatment. Drug concentration in hair promises to be reliable for assessing exposure to antiretroviral (ARV) drugs. Pharmacokinetic modelling can explore utility of drug in hair. We aimed at developing and validating a pharmacokinetic model based on atazanavir/ritonavir (ATV/r) in hair and identify factors associated with variabilities in hair accumulation.
Methods
We based the study on secondary data analysis whereby data from a previous study on Zimbabwean adolescents which collected hair samples at enrolment and 3 months follow-up was used in model development. We performed model development in NONMEM (version 7.3) ADVAN 13.
Results
There is 16% / 18% of the respective ATV/r in hair as a ratio of steady-state trough plasma concentrations. At follow-up, we estimated an increase of 30% /42% of respective ATV/r in hair. We associated a unit increase in adherence score with 2% increase in hair concentration both ATV/r. Thinner participants had 54% higher while overweight had 21% lower atazanavir in hair compared to normal weight participants. Adolescents receiving care from fellow siblings had atazanavir in hair at least 54% less compared to other forms of care.
Conclusion
The determinants of increased ATV/r concentrations in hair found in our analysis are monitoring at follow up event, body mass index, and caregiver status. Measuring drug concentration in hair is feasibly accomplished and could be more accurate for monitoring ARV drugs exposure.
Funder
Letten Foundation Zimbabwe
National Institutes of Health
Fogarty HIV Implementation Science Research Training Program
Fogarty International Clinical, Operational and Health Services Research and Training Award
National Institute of Allergy and Infectious Diseases
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Pharmacology
Reference46 articles.
1. Global and Regional Trends. UNICEF DATA. Available from: //data.unicef.org/topic/hivaids/global-regional-trends/. [cited 2017 Dec 28].
2. ZWE_2018_countryreport.pdf. Available from: http://www.unaids.org/sites/default/files/country/documents/ZWE_2018_countryreport.pdf. [cited 2019 Jan 21].
3. Paterson DL, Swindells S, Mohr J, et al. Adherence to protease inhibitor therapy and outcomes in patients with HIV infection. Ann Intern Med. 2002;136(3):21–30.
4. Cohen MS, Chen YQ, McCauley M, et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med. 2011;365(6):493–505.
5. Chawana TD, Katzenstein D, Nathoo K, Ngara B, CFB N. Evaluating an enhanced adherence intervention among HIV positive adolescents failing atazanavir/ritonavir-based second line antiretroviral treatment at a public health clinic. J AIDS HIV Res. 2017;9(1):17–30.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献