The crucial role of particle surface reactivity in respirable quartz-induced reactive oxygen/nitrogen species formation and APE/Ref-1 induction in rat lung

Author:

Albrecht Catrin,Knaapen Ad M,Becker Andrea,Höhr Doris,Haberzettl Petra,van Schooten Frederik J,Borm Paul JA,Schins Roel PF

Abstract

Abstract Persistent inflammation and associated excessive oxidative stress have been crucially implicated in quartz-induced pulmonary diseases, including fibrosis and cancer. We have investigated the significance of the particle surface reactivity of respirable quartz dust in relation to the in vivo generation of reactive oxygen and nitrogen species (ROS/RNS) and the associated induction of oxidative stress responses in the lung. Therefore, rats were intratracheally instilled with 2 mg quartz (DQ12) or quartz whose surface was modified by either polyvinylpyridine-N-oxide (PVNO) or aluminium lactate (AL). Seven days after instillation, the bronchoalveolar lavage fluid (BALF) was analysed for markers of inflammation (total/differential cell counts), levels of pulmonary oxidants (H2O2, nitrite), antioxidant status (trolox equivalent antioxidant capacity), as well as for markers of lung tissue damage, e.g. total protein, lactate dehydrogenase and alkaline phosphatase. Lung homogenates as well as sections were investigated regarding the induction of the oxidative DNA-lesion/oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) using HPLC/ECD analysis and immunohistochemistry, respectively. Homogenates and sections were also investigated for the expression of the bifunctional apurinic/apyrimidinic endonuclease/redox factor-1 (APE/Ref-1) by Western blotting and immunohistochemistry. Significantly increased levels of H2O2 and nitrite were observed in rats treated with non-coated quartz, when compared to rats that were treated with either saline or the surface-modified quartz preparations. In the BALF, there was a strong correlation between the number of macrophages and ROS, as well as total cells and RNS. Although enhanced oxidant generation in non-coated DQ12-treated rats was paralleled with an increased total antioxidant capacity in the BALF, these animals also showed significantly enhanced lung tissue damage. Remarkably however, elevated ROS levels were not associated with an increase in 8-OHdG, whereas the lung tissue expression of APE/Ref-1 protein was clearly up-regulated. The present data provide further in vivo evidence for the crucial role of particle surface properties in quartz dust-induced ROS/RNS generation by recruited inflammatory phagocytes. Our results also demonstrate that quartz dust can fail to show steady-state enhanced oxidative DNA damage in the respiratory tract, in conditions were it elicits a marked and persistent inflammation with associated generation of ROS/RNS, and indicate that this may relate to compensatory induction of APE/Ref-1 mediated base excision repair.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3