Role of the gap junctions in the contractile response to agonists in pulmonary artery from two rat models of pulmonary hypertension

Author:

Billaud Marie,Dahan Diana,Marthan Roger,Savineau Jean-Pierre,Guibert Christelle

Abstract

Abstract Background Pulmonary hypertension (PH) is characterized by arterial vascular remodelling and alteration in vascular reactivity. Since gap junctions are formed with proteins named connexins (Cx) and contribute to vasoreactivity, we investigated both expression and role of Cx in the pulmonary arterial vasoreactivity in two rat models of PH. Methods Intrapulmonary arteries (IPA) were isolated from normoxic rats (N), rats exposed to chronic hypoxia (CH) or treated with monocrotaline (MCT). RT-PCR, Western Blot and immunofluorescent labelling were used to study the Cx expression. The role of Cx in arterial reactivity was assessed by using isometric contraction and specific gap junction blockers. Contractile responses were induced by agonists already known to be involved in PH, namely serotonin, endothelin-1 and phenylephrine. Results Cx 37, 40 and 43 were expressed in all rat models and Cx43 was increased in CH rats. In IPA from N rats only, the contraction to serotonin was decreased after treatment with 37-43Gap27, a specific Cx-mimetic peptide blocker of Cx 37 and 43. The contraction to endothelin-1 was unchanged after incubation with 40Gap27 (a specific blocker of Cx 40) or 37-43Gap27 in N, CH and MCT rats. In contrast, the contraction to phenylephrine was decreased by 40Gap27 or 37-43Gap27 in CH and MCT rats. Moreover, the contractile sensitivity to high potassium solutions was increased in CH rats and this hypersensitivity was reversed following 37-43Gap27 incubation. Conclusion Altogether, Cx 37, 40 and 43 are differently expressed and involved in the vasoreactivity to various stimuli in IPA from different rat models. These data may help to understand alterations of pulmonary arterial reactivity observed in PH and to improve the development of innovative therapies according to PH aetiology.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3