Author:
Peel Samantha E,Liu Bo,Hall Ian P
Abstract
Abstract
Background
Control of cytosolic calcium plays a key role in airway myocyte function. Changes in intracellular Ca2+ stores can modulate contractile responses, modulate proliferation and regulate synthetic activity. Influx of Ca2+ in non excitable smooth muscle is believed to be predominantly through store operated channels (SOC) or receptor operated channels (ROC). Whereas agonists can activate both SOC and ROC in a range of smooth muscle types, the specific trigger for SOC activation is depletion of the sarcoplasmic reticulum Ca2+ stores. The mechanism underlying SOC activation following depletion of intracellular Ca2+ stores in smooth muscle has not been identified.
Methods
To investigate the roles of the STIM homologues in SOC activation in airway myocytes, specific siRNA sequences were utilised to target and selectively suppress both STIM1 and STIM2. Quantitative real time PCR was employed to assess the efficiency and the specificity of the siRNA mediated knockdown of mRNA. Activation of SOC was investigated by both whole cell patch clamp electrophysiology and a fluorescence based calcium assay.
Results
Transfection of 20 nM siRNA specific for STIM1 or 2 resulted in robust decreases (>70%) of the relevant mRNA. siRNA targeted at STIM1 resulted in a reduction of SOC associated Ca2+ influx in response to store depletion by cyclopiazonic acid (60%) or histamine but not bradykinin. siRNA to STIM2 had no effect on these responses. In addition STIM1 suppression resulted in a more or less complete abrogation of SOC associated inward currents assessed by whole cell patch clamp.
Conclusion
Here we show that STIM1 acts as a key signal for SOC activation following intracellular Ca2+ store depletion or following agonist stimulation with histamine in human airway myocytes. These are the first data demonstrating a role for STIM1 in a physiologically relevant, non-transformed endogenous expression cell model.
Publisher
Springer Science and Business Media LLC
Reference18 articles.
1. Hall IP: Second messengers, ion channels and pharmacology of airway smooth muscle.
Eur Respir J 2000, 15:1120–1127.
2. Murray RK, Kotlikoff MI: Receptor-activated calcium influx in human airway smooth muscle cells.
J Physiol 1991, 435:123–144.
3. White TA, Xue A, Chini EN, Thompson M, Sieck GC, Wylam ME: Role of TRPC3 in Tumor Necrosis Factor-alpha Enhanced Calcium Influx in Human Airway Myocytes.
Am J Respir Cell Mol Biol 2006.
4. Corteling RL, Li S, Giddings J, Westwick J, Poll C, Hall IP: Expression of transient receptor potential C6 and related transient receptor potential family members in human airway smooth muscle and lung tissue.
Am J Respir Cell Mol Biol 2004, 30:145–154.
5. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA: STIM1, an essential and conserved component of store-operated Ca2+ channel function.
J Cell Biol 2005, 169:435–445.
Cited by
99 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献