Non-intrusive load monitoring and decomposition method based on decision tree

Author:

Lin Jiang,Ding XianfengORCID,Qu Dan,Li Hongyan

Abstract

AbstractIn order to realize the problems of non-intrusive load monitoring and decomposition (NILMD) from two aspects of load identification and load decomposition, based on the load characteristics of the database, this paper firstly analyzes and identifies the equipment composition of mixed electrical equipment group by using the load decision tree algorithm. Then, a 0–1 programming model for the equipment status identification is established, and the Particle Swarm Optimization (PSO) is used to solve the model for equipment state recognition, and the equipment operating state in the equipment group is identified. Finally, a simulation experiment is carried out for the partial data of Question A in the 6th “teddy cup” data mining challenge competition.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics

Reference17 articles.

1. Hart GW. Noninstrusive appliance load monitoring. In: Proceedings of the IEEE. vol. 80. 1992. p. 1870–91.

2. Roos JG, Lan IE, Botha EC et al.. Using neural networks for non-intrusive monitoring of industrial electrical loads. In: Proceedings on instrumentation and measurement technology conference in Jpn, Hamamatsu. 1994. p. 1115–8.

3. Drenker S, Kader A. Nonintrusive monitoring of electric loads. IEEE Comput Applic Power. 1999;12(4):47–51.

4. Laughman C, Lee K, Cox R et al.. Power signature analysis. IEEE Power Energy Mag. 2003;1(2):56–63.

5. Suzuki K, Inagaki S, Suzuki T et al.. Non-intrusive appliance load monitoring based on integer programming. IEEJ Transactions on Power and Energy. 2008;128(11):1386–92.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3