Unsupervised deep learning techniques for automatic detection of plant diseases: reducing the need of manual labelling of plant images

Author:

Benfenati Alessandro,Causin PaolaORCID,Oberti Roberto,Stefanello Giovanni

Abstract

AbstractCrop protection from diseases through applications of plant protection products is crucial to secure worldwide food production. Nevertheless, sustainable management of plant diseases is an open challenge with a major role in the economic and environmental impact of agricultural activities. A primary contribution is expected to come from precision crop protection approaches, with treatments tailored to spatial and time-specific needs of the crop, in contrast to the current practice of applying treatments uniformly to fields. In view of this, image-based automatic detection of early disease symptoms is considered a key enabling technology for high throughput scouting of the crop, in order to timely target the treatments on emerging infection spots. Thanks to the unprecedented performance in image-recognition problems, Deep Learning (DL) methods based on Convolutional Neural Networks (CNNs) have recently entered the domain of plant disease detection. This work develops two DL approaches for automatic recognition of powdery mildew disease on cucumber leaves, with a specific focus on exploring unsupervised techniques to overcome the need of large training set of manually labelled images. To this aim, autoencoder networks were implemented for unsupervised detection of disease symptoms through: i) clusterization of features in a compressed space; ii) anomaly detection. The two proposed approaches were applied to multispectral images acquired during in-vivo experiments, and the obtained results were assessed by quantitative indices. The clusterization approach showed only partially capability to provide accurate disease detection, even if it gathered some relevant information. Anomaly detection showed instead to possess a significant potential of discrimination which could be further exploited as a prior step to train more powerful supervised architectures with a very limited number of labelled samples.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3