Spline-based methods for functional data on multivariate domains

Author:

Basna Rani,Nassar Hiba,Podgórski KrzysztofORCID

Abstract

AbstractFunctional data analysis is typically performed in two steps: first, functionally representing discrete observations, and then applying functional methods to the so-represented data. The initial choice of a functional representation may have a significant impact on the second phase of the analysis, as shown in recent research, where data-driven spline bases outperformed the predefined rigid choice of functional representation. The method chooses an initial functional basis by an efficient placement of the knots using a simple machine-learning algorithm. The knot selection approach does not apply directly when the data are defined on domains of a higher dimension than one such as, for example, images. The reason is that in higher dimensions the convenient and numerically efficient spline spaces use tensor bases that require knots located on a lattice. This fundamentally limits flexible knot placement which is fundamental for the approach. The goal of this research is two-fold: first, to propose modified approaches that circumvent the issue by coding the irregular knot selection into the topology of the spaces of tensor-based splines; second, to apply the approach to a classification problem workflow for functional data that utilizes knot selection. The performance is preliminarily accessed on a benchmark dataset and shown to be comparable to or better than the previous methods.

Funder

Vetenskapsrådet

Lund University

Publisher

Springer Science and Business Media LLC

Reference11 articles.

1. Bader M. Space-filling curves: an introduction with applications in scientific computing. vol. 9. Berlin: Springer; 2012.

2. Basna R, Nassar H, Podgórski K. R-Package DKK, Version: 0.1.0, Orthonormal Basis Selection using Machine Learning. 2021. https://github.com/ranibasna/ddk.

3. Basna R, Nassar H, Podgórski K. Data driven orthogonal basis selection for functional data analysis. J Multivar Anal. 2022;189:104868.

4. Basna R, Nassar H, Podgórski K. Splinets–orthogonal splines and fda for the classification problem. 2023. arXiv preprint. arXiv:2311.17102.

5. Eilers P, Marx B. Practical smoothing. The joys of P-splines. Cambridge: Cambridge University Press; 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3