Model order reduction for the simulation of parametric interest rate models in financial risk analysis

Author:

Binder Andreas,Jadhav OnkarORCID,Mehrmann Volker

Abstract

AbstractThis paper presents a model order reduction approach for large scale high dimensional parametric models arising in the analysis of financial risk. To understand the risks associated with a financial product, one has to perform several thousand computationally demanding simulations of the model which require efficient algorithms. We establish a model reduction approach based on a variant of the proper orthogonal decomposition method to generate small model approximations for the high dimensional parametric convection-diffusion-reaction partial differential equations. This approach requires to solve the full model at some selected parameter values to generate a reduced basis. We propose an adaptive greedy sampling technique based on surrogate modeling for the selection of the sample parameter set. The new technique is analyzed, implemented, and tested on industrial data of a floater with cap and floor under the Hull–White model. The results illustrate that the reduced model approach works well for short-rate models.

Funder

H2020 Marie Skłodowska-Curie Actions

Technische Universität Berlin

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics

Reference55 articles.

1. Aichinger M, Binder A. A workout in computational finance. 1st ed. West Sussex: Wiley; 2013.

2. Jorion P. Financial risk manager handbook. 2nd ed. New York: Wiley; 2007.

3. Wilmott P, Howison S, Dewynne J. The mathematics of financial derivatives: a student introduction. 1st ed. London: Cambridge University Press; 2002.

4. Jorion P. Counterparty credit risk and credit value adjustment: a continuing challenge for global financial markets. 2nd ed. New York: Wiley; 2012.

5. European Commission. Commission delegated regulation (EU) 1286/2014. Off J EU. 2014;1:1–23.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3