Focused ultrasound-mediated bbb disruption is associated with an increase in activation of AKT: experimental study in rats

Author:

Jalali Shahrzad,Huang Yuexi,Dumont Daniel J,Hynynen Kullervo

Abstract

Abstract Background The Blood Brain Barrier (BBB) maintains the homeostasis of central nervous system by preventing the free passage of macromolecules from the systemic circulation into the brain. This normal physiological function of the BBB presents a challenge for delivery of therapeutic compounds into the brain. Recent studies have shown that the application of focused ultrasound together with ultrasound contrast agent (microbubbles) temporarily increases the permeability of the BBB. This effect is associated with breakdown of tight junctions, the structures that regulate the paracellular permeability of the endothelial cell layer. The influence of this ultrasound effect on the activation of intracellular signaling proteins is currently not well understood. Therefore, the aim of this study was to investigate the activation of cell survival signaling molecules in response to ultrasound-mediated BBB opening; Methods The BBB was disrupted in two four-spot lines (1-1.5 mm spacing) along the right hemisphere of rat brain with ultrasound beams (0.3 MPa, 120 s, 10 ms bursts, repetition frequency = 1 Hz) in the presence Definity microbubbles. Contrast-enhanced MRI images were acquired to assess the extent of BBB opening upon which the animals were sacrificed and the brains removed and processed for biochemical and immunohistochemical analyses; Results Immunoblotting of sonicated brain lysates resolved by SDS-PAGE demonstrated an increase in phosphorylation of Akt and its downstream signaling molecule, GSK3β, while the phosphorylation of MAPK remained unchanged. The elevated levels of pAkt and pGSK3β are still evident after 24 hours post-sonication, a time point where the integrity of the BBB is known to be re-established. Furthermore, immunofluoresence staining localized this increase in pAkt and pGSK3β levels to neuronal cells flanking the region of the disrupted BBB; Conclusions Our data demonstrates that ultrasound-mediated BBB disruption causes an activation of the Akt signaling pathway in neuronal cells surrounding the disrupted BBB.

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),General Medicine

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3