A new approach to estimation of the number of central synapse(s) included in the H-reflex

Author:

Ghavanini Mohammadreza Alavian,Ashraf Alireza,Sadeghi Shahram,Emad Mohammadreza

Abstract

Abstract Background Among the main clinical applications of the H-reflex are the evaluation of the S1 nerve root conductivity such as radiculopathy and measurement of the excitability of the spinal motoneurons in neurological conditions. An attempt has been made to reduce the pathway over which H-reflex can be obtained in a hope to localize a lesion to the S1 nerve root, so the S1 central loop has been suggested. The main goal of this study is the estimation of the H-reflex number of synapse(s) for better understanding of the physiology of this practical reflex. Methods Forty healthy adult volunteers (22 males, 18 females) with the mean age of (37.7 ± 10.2) years participated in this study. They were positioned comfortably in the prone position, with their feet off the edge of the plinth. Recording electrodes were positioned at the mid point of a line connecting the mid popliteal crease to the proximal flare of the medial malleolus. Stimulation was applied at the tibial nerve in the popliteal fossa and H, F and M waves were recorded. Without any change in the location of the recording electrodes, a monopolar needle was inserted as cathode at a point 1 cm medial to the posterior superior iliac spine, perpendicular to the frontal plane. The anode electrode was placed over the anterior superior iliac spine, and then M and H waves of the central loop were recorded. After processing the data, sacral cord conduction delay was determined by this formula: * Sacral cord conduction delay = central loop of H-reflex – (delays of the proximal motor and sensory fibers in the central loop). Results The central loop of H-reflex was (6.77 ± 0.28) msec and the sacral cord conduction delay was (1.09 ± 0.06) msec. Conclusion The sacral cord conduction time was estimated to be about 1.09 msec in this study and because at least 1 msec is required to transmit the signal across the synapse between the sensory ending and the motor cell, so this estimated time was sufficient for only one central synapse in this reflex.

Publisher

Springer Science and Business Media LLC

Subject

Clinical Neurology,General Medicine

Reference14 articles.

1. Hoffmann P: Über die Beziehungen der Schenreflexe zur willkürlichen Bewegun zum Tonus. Zoo Biol. 1918, 68: 351-70.

2. Pease WS, Lagattuta FP, Johnson EW: Spinal nerve stimulation in S1 radiculopathy. Am J Phys Med Rehabil. 1990, 69 (2): 77-80.

3. Pease WS, Kozakiewics R, Johnson EW: Central loop of the H-reflex. Normal Value and use in S1 radiculopathy. Am J Phys Med Rehabil. 1997, 76 (3): 182-184. 10.1097/00002060-199705000-00002.

4. Ghavanini MR, Ghadi RS, Ghavanini AA: The central loop of H-reflex in the S1 spinal nerve: Normal values and constitutional influencing factors. Electromyogr Clin Neurophysiol. 2001, 41 (5): 259-262.

5. Zhu Y, Starr A, Haldeman S, Chu JK., Sugerman RA: Soleus H-reflex to S1 nerve root stimulation. Electroencephalogr Clin Neurophysiol. 1998, 109: 10-14. 10.1016/S0924-980X(97)00058-1.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3