Extreme drought triggers parallel shifts in wood anatomical and physiological traits in upper treeline of the Mediterranean Andes

Author:

Santini LuizORCID,Craven DylanORCID,Rodriguez Daigard Ricardo OrtegaORCID,Quintilhan Manolo TrindadeORCID,Gibson-Carpintero StephanieORCID,Torres Cristina Aravena,Roig Fidel A.ORCID,Muñoz Ariel A.ORCID,Venegas-Gonzalez AlejandroORCID

Abstract

Abstract Background Treeline ecotones of Mediterranean ecoregions have been affected by the increasing intensity and severity of droughts. Even though the effect of droughts on forest dynamics has been widely documented, knowledge is relatively scarce of how extreme climate episodes affect the hydraulic structure and, therefore, the physiology of woody plants. The Mediterranean Andes have experienced an uninterrupted period of drought since 2010, including an extremely dry year in 2019 with approximately 80% rainfall deficit. Here, we investigated shifts in wood anatomical and physiological traits of Kageneckia angustifolia, an endemic treeline species, in response to this drought period. Methods We evaluated the xylem plasticity of three K. angustifolia populations across their natural distribution (31–35° SL) based on anatomical (vessel structure and distribution) and physiological (intrinsic water-use efficiency) variables in the tree rings. We focused on the period 2000–2020 that corresponds to before the megadrought (2000–2007), (ii) megadrought (2008–2018) and (iii) hyperdrought (2019–2020). The variables were annualized and analyzed by linear mixed-effects models. Results Our results provide insights to the anatomical and physiological mechanisms underlying the resilience of treeline forests to persistent droughts in central Chile. We found that the extreme drought in 2019–2020 triggered shifts in vessel size and frequency that increased hydraulic safety. These significant shifts in vessel traits occurred in parallel with a decrease in pit aperture area and an increase in water-use efficiency, further increasing the resilience of K. angustifolia to extreme drought stress. Conclusions Our results revealed coordinated shifts in vessel size and frequency and water-use efficiency in response to the megadrought, thereby reducing vulnerability to hydraulic failure. The apparent resilience of K. angustifolia to extreme droughts suggests that this adaptation to drought stress may increase its ability to tolerate novel climatic conditions of treeline environments of the Mediterranean Andes, although it is not clear whether these adaptations will be sufficient to persist in scenarios that predict intensification of climate stress. Finally, our results provide empirical evidence that integrating wood anatomical and physiological traits facilitates the understanding of resilience mechanisms that treeline forests develop in the face of increasing drought stress.

Funder

Fondecyt

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3