Divergent responses of plant biomass and diversity to short-term nitrogen and phosphorus addition in three types of steppe in Inner Mongolia, China

Author:

Guo Ning,Xie Mingyang,Fang ZhaoORCID,Jiao Feng,Han Xiaoyu

Abstract

Abstract Background Understanding the response of the plant community to increasing nitrogen (N) and phosphorus (P) inputs is helpful for managing and protecting grassland ecosystems in semiarid areas. However, information about different types of steppe responses to N and P availability in semiarid grasslands is limited. In 2017–2018, two field experiments were conducted with six levels of N (from 5 to 30 g N m−2 yr−1) and P (from 2.5 g to 15 g P m−2 yr−1) additions in three different temperate steppes, including meadow steppe (MS), typical steppe (TS), and desert steppe (DS), in northern China to study the effects of these addition rates on community biomass and diversity. Results Our results showed that plant biomass and diversity in the three steppe types in Inner Mongolia responded differently to elevated N and P inputs. Increasing P promoted aboveground and belowground biomass more than increasing N in the three temperate steppes. Short-term N and P additions reduced plant diversity to some extent, with the most pronounced decreases in MS and DS. It is noteworthy that there were response thresholds for plant diversity and biomass in response to N and P inputs in different steppe types (e.g., 10 g P m−2 yr−1). Furthermore, redundancy analysis and stepwise regression analysis revealed that changes in soil properties induced by nutrient addition and climate conditions jointly regulated changes in vegetation biomass and diversity. Conclusions The plant biomass and diversity of three steppe types in Inner Mongolia respond divergently to elevated N and P inputs. Our results indicate that regional differences in climate and soil substrate conditions may jointly contribute to the divergent responses of plant biomass and diversity to short-term N and P addition. Our analyses provide new insights into managing and protecting grassland ecosystems. Considering that the effects of nutrient addition on plant diversity and productivity may have increasing effects over time, studies on long-term in situ nutrient addition are necessary.

Funder

national key research and development program of china

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3