Ecological niche shifts affect the potential invasive risk of Phytolacca americana (Phytolaccaceae) in China

Author:

Xu Yifeng,Ye Xingzhuang,Yang Qianyue,Weng Huiying,Liu Yipeng,Ahmad Sagheer,Zhang Guofang,Huang Qiuliang,Zhang Tianyu,Liu BaoORCID

Abstract

Abstract Background Predicting the potential habitat of Phytolacca americana, a high-risk invasive species, can help provide a scientific basis for its quarantine and control strategies. Using the optimized MaxEnt model, we applied the latest climate data, CMIP6, to predict the distribution of potential risk zones and their change patterns for P. americana under current and future (SSP126, SSP245, SSP585) climate conditions, followed by invasion potential analysis. Results The predictions of MaxEnt model based on R language optimization were highly accurate. A significantly high area of 0.8703 was observed for working characteristic curve (AUC value) of subject and the kappa value was 0.8074. Under the current climate conditions, the risk zones for P. americana were mainly distributed in Sichuan, Chongqing, Guizhou, Hunan, and Guangxi provinces. The contribution rate of each climatic factor of P. americana was calculated using the jackknife test. The four factors with the highest contribution rate included minimum temperature of coldest month (bio6, 51.4%), the monthly mean diurnal temperature difference (bio2, 27.9%), precipitation of the driest quarter (bio17, 4.9%), and the warmest seasonal precipitation (bio12, 4.3%). Conclusion Under future climatic conditions, the change in the habitat pattern of P. americana generally showed a migration toward the Yangtze River Delta region and the southeastern coastal region of China. This migration exhibited an expansion trend, highlighting the strong future invasiveness of the species. Based on the predictions, targeted prevention and control strategies for areas with significant changes in P. americana were developed. Therefore, this study emphasizes the need of an integrated approach to effectively prevent the further spread of invasive plants.

Funder

Grassland Administration Science and Technology Program

Key research and development project of Ningxia Hui Autonomous Region, China

China Foundation for Poverty Alleviation

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3