Predicting invasion potential of Senna didymobotrya (Fresen.) Irwin & Barneby under the changing climate in Africa

Author:

Weldemariam Elias Ch.ORCID,Dejene Sintayehu W.

Abstract

Abstract Background Senna didymobotrya is a native African flowering shrub. It is suspected that climate change encourages the introduction and spread of invasive alien species. The possible invasion of S. didymobotrya across the continent is expected to increase in the future due to ongoing climate change. Nonetheless, there is still paucity of empirical evidence on the extent to which the changing climate contributes to the surge of the flowering shrub. This study, therefore, investigated the present and potential invasion of S. didymobotrya using the species distribution model under changing climate conditions. The two representative concentration pathways (RCP4.5 and RCP8.5) and eight bioclimatic variables and one topographic variable were used to simulate the current and future (2050s and 2070s) invasion of S. didymobotrya in Africa. The model performance was assessed using the area under the receiver operating characteristic curve (AUC) and true skill statistics (TSS). Results The results of the study showed that under the current climatic conditions, 18% of Africa is suitable for the establishment and invasion of S. didymobotrya. The most suitable hotspot for S. didymobotrya invasion is eastern Africa, followed by southern Africa. The predicted model showed that by 2050, 3.3% and 3.12% of the continent would be highly suitable areas for the invasion of the species under RCP4.5 and RCP8.5, respectively. In the 2070s, under RCP4.5 and RCP8.5, the highly suitable area would be 3.13% and 2.7%, respectively. In relation to the current suitability, the cumulative projected areas of the low and moderate suitability class under RCP4.5 and RCP8.5 will rise by the years 2050 and 2070. However, under both RCPs, the non-suitable area for S. didymobotrya invasion would gradually decrease. Conclusions From the findings, it can be concluded that the ecosystem’s vulnerability to S. didymobotrya invasion under future climatic conditions will proliferate significantly. Hence, to prevent the projected harm to biodiversity and ecosystem services, governments need to focus their future biodiversity management and policy directions on the means and strategies of minimizing the invasion and the distribution rate of S. didymobotrya across habitat types.

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modelling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3