Abstract
Abstract
Background
This study estimated the total soil organic C (SOC) stock of the wetland influence zone of Bichitrapur mangroves in eastern India in a spatially explicit manner. Both spatial and vertical distribution of SOC densities with respect to land use/land cover (LULC) pattern were assessed. Subsequently, some site-specific management strategies were forwarded towards enhancement of C sequestration potential.
Methods
The changing patterns of LULC within the wetland influence zone of the site were analyzed using Landsat TM (30 m) and Pleiades-1A (2 m) imageries from 1988 to 2018. Point-specific SOC measurement was done using samples taken from four core-depth intervals (viz. D1: 0–20 cm, D2: 20–40 cm, D3: 40–70 cm, D4: 70–100 cm) at 89 locations belonging to different LULC categories. Spatial interpolation was applied on this point-based data to produce SOC density and stock models as a whole and at all core-depths. Relationships between SOC density, core-depth and present LULC were evaluated through multivariate statistical analyses.
Results
The LULC transformations during last three decades suggested the gradual growth of mangrove plantations as well as agricultural and aquacultural activities. Most amount of SOC was concentrated in D1 (37.17%) followed by D3 (26.51%), while D4 had the lowest (10.87%). The highest mean SOC density was observed in the dense mangrove patches (248.92 Mg ha−1) and the lowest mean was in the Casuarina plantations (2.78 Mg ha−1). Here, Spline method emerged as the best-fit interpolation technique to model SOC data (R2 = 0.74) and estimated total SOC stock of the entire wetland influence zone as 169,569.40 Mg and the grand mean as 125.56 Mg ha−1. Overall, LULC was inferred as a major determinant of SOC dynamics with a statistically significant effect (p < 0.001), whereas no such inference could be drawn for soil core-depth.
Conclusions
The C sequestration potential of sites such as the present one could be increased with appropriate zone-wise plantation strategies, restriction on the land conversion to aquaculture and promotion of ecotourism. Periodic monitoring through integration of geospatial techniques and elemental analyses would be immensely beneficial in this regard.
Graphic Abstract
Funder
Science and Engineering Research Board
Publisher
Springer Science and Business Media LLC
Subject
Ecological Modeling,Ecology
Reference65 articles.
1. Bae J, Ryu Y (2015) Land use and land cover changes explain spatial and temporal variations of the soil organic carbon stocks in a constructed urban park. Landsc Urban Plan 136:57–67
2. Bai X, Sharma RC, Tateishi R, Kondoh A, Wuliangha B, Tana G (2017) A detailed and high-resolution land use and land cover change analysis over the past 16 years in the Horqin sandy land, Inner Mongolia. Math Probl Eng. https://doi.org/10.1155/2017/1316505
3. Banerjee K, Sahoo CK, Bal G, Mallik K, Paul R, Mitra A (2020) High blue carbon stock in mangrove forests of Eastern India. Trop Ecol 61:150–167. https://doi.org/10.1007/s42965-020-00072-y
4. Barman NK, Chatterjee S, Paul AK (2016) Coastal morphodynamics: integrated spatial modeling on the deltaic Balasore coast, India. Springer Nature, Switzerland
5. Barman NK, Paul AK, Maity M, Pahari S (2019) Mangrove species succession and zonation pattern estimation in relation with landscape characteristics through quadrate method at Bichitrapur Mangroves, Odisha. J Coast Sci 7:1–7
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献