Rhizosphere fungal community assembly varied across functional guilds in a temperate forest

Author:

Liang Shuang,Arraiano-Castilho Ricardo,Neuenkamp Lena,Li Hui,Bai Zhen,Zhang Mengxu,Yin Jin,Yuan Zuoqiang,Wang Xugao

Abstract

Abstract Background Rhizosphere fungi play an important role in plant community dynamics and biogeochemical cycling. While the drivers of fungal community assembly have been studied in varied ecosystems, it is still unclear how these processes function for rhizosphere soil fungi in temperate forests. Furthermore, it is unknown whether the relative contributions of important determinants remain consistent or vary across fungal ecological guilds. This study used high-throughput next-generation sequencing to characterize the fungal communities of 247 rhizosphere soil samples from 19 tree species in a temperate forest within Northeast China. We aimed to investigate how three important determinants in temperate forests (host tree species, neighbouring plant communities, and edaphic properties) influence the community assembly of fungal functional guilds in the rhizosphere soil of trees. Results We found that host tree species contributed more to plant pathogens’ community composition than ectomycorrhizal fungi, and plant pathogens consistently showed higher host specialization than ectomycorrhizal fungi. Saprotrophs also showed high host specialization, which was mediated by the tree species’ effect on rhizosphere soil pH. Although neighboring plant communities contributed remarkably to richness of all fungal guilds, this effect on fungal composition varied across functional guilds, with stronger effect for biotrophic guilds (plant pathogens and ectomycorrhizal fungi) than for non-biotrophic guild (saprotrophs). Neighboring plant communities shaped the ectomycorrhizal community composition strongly in all samples regardless of host trees’ mycorrhizal type, whereas edaphic properties were the most important drivers for this guild in samples from only ectomycorrhizal-associated trees. Edaphic properties played an important role in shaping ectomycorrhizal and saprotrophic fungal compositions, indicating the importance of edaphic properties on the fungal functional guilds associated with the absorption and decomposition of nutrients. Conclusions These results demonstrated that rhizosphere soil fungal community assembly determinants varied across fungal guilds, reflecting their different ecological functions in temperate forest ecosystems.

Funder

the Strategic Priority Research Program of the Chinese Academy of Sciences

Key Research Program of Frontier Sciences, Chinese Academy of Sciences

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3